树言树语 中国式的开放平台遭遇尴尬式的价值体现

分享一下我老师大神的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.youkuaiyun.com/jiangjunshow

               

 

 

    这年内微博的兴起可谓吸引了很多人目光,微博的效应时效性和分享性带来前所没有的强悍,国内最早的就数新浪微博,其次网易,腾讯等各大网站加入战团,一时各家都推出自己产品,掀起了市场热浪。

   今天在聊天交流当中遇到一个比较尴尬的问题。这个问题是关于中国开发者在开发出的产品,一方面开发者给开发商带了效益。可是,他们有没有得到他们相应的待遇?各大平台 都开放自家的API,不过实际性收入就奇怪?今天遇到了一个开发者,开发出一个插件,得到了审批认证。在交谈下,审批的产品挣取了人气,可是收入基本上从来没有提交过。难道开放平台都是这样?在中国内,对待开发者的价值难道就是这样?相比国外,开发者价值在一定程度上得到重视。这也可能是中国国情所决定的。关于互联网兴起,互联网提倡的资源都是免费,共享的,这样一来,在一些公司来讲,通过卖软件收入就比较困难,但非绝对。比较让人伤心的例子,当然是中国的单机游戏市场没落,这样结果也是无奈的。时代 在变迁,互联网在兴起,各大网站不一定能够满足越来越多的人需求。通过开放平台有利于创造,发展更加强大的小宇宙。不过,悲哀的事,或者是悲观主义引起的。中国开放平台究竟是卖广告呢还是要给软件开发者提供更大的发挥空间,然而在优秀的应用当中,开发者收入依旧比较少,可怜,甚至说,开放平台带来的是仅仅一场广告效应,而不是为中国互联网创造更多有价值的东西。但是在这种环境包围下,价值究竟是怎样体现?是通过物质体现,还是其他呢?当然资金的支持也是体现开放平台怎样对待开发者的一种态度。可是这种态度是正向的,还是仅仅被动的?我想,开放平台需要提供更多为开发者提供发展平台,还有改善开发者的产品价值待遇,鼓励更多开发者加入,发展其创意。说不定会是一场不错盛事,至于是不是?我想,应该好好想想。究竟这些平台是卖广告的?还是为更加IT人员带来价值?关键这家公司是以何种态度去对待开发者。

 

    不知道有几多家开放平台可以做到?除了apple之外?我想在国内还是比较困难。

 

 

           

分享一下我老师大神的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.youkuaiyun.com/jiangjunshow

本文旨在系统阐述利用MATLAB平台执行多模态音分离任务的方法,重点围绕LRS3数据集的数据生成流程展开。LRS3(长时RGB+音频音数据集)作为一个规模庞大的视频与音频集合,整合了丰富的视觉与听觉信息,适用于音识别、音分离及情感分析等多种研究场景。MATLAB凭借其高效的数值计算能力与完备的编程环境,成为处理此类多模态任务的适宜工具。 多模态音分离的核心在于综合利用视觉与听觉等多种输入信息来解析音信号。具体而言,该任务的目标是从混合音频中分离出不同说话人的声音,并借助视频中的唇部运动信息作为辅助线索。LRS3数据集包含大量同步的视频与音频片段,提供RGB视频、单声道音频及对应的文本转录,为多模态音处理算法的开发与评估提供了重要平台。其高质量与大容量使其成为该领域的关键资源。 在相关资源包中,主要包含以下两部分内容: 1. 说明文档:该文件详细阐述了项目的整体结构、代码运行方、预期结果以及可能遇到的问题与解决方案。在进行数据处理或模型训练前,仔细阅读此文档对正确理解与操作代码至关重要。 2. 专用于音分离任务的LRS3数据集版本:解压后可获得原始的视频、音频及转录文件,这些数据将由MATLAB脚本读取并用于生成后续训练与测试所需的数据。 基于MATLAB的多模态音分离通常遵循以下步骤: 1. 数据预处理:从LRS3数据集中提取每段视频的音频特征与视觉特征。音频特征可包括梅尔频率倒谱系数、感知线性预测系数等;视觉特征则涉及唇部运动的检测与关键点定位。 2. 特征融合:将提取的音频特征与视觉特征相结合,构建多模态表示。融合方可采用简单拼接、加权融合或基于深度学习模型的复杂方法。 3. 模型构建:设计并实现用于音分离的模型。传统方法可采用自适应滤波器或矩阵分解,而深度学习方法如U-Net、Transformer等在多模态学习中表现优异。 4. 训练与优化:使用预处理后的数据对模型进行训练,并通过交叉验证与超参数调整来优化模型性能。 5. 评估与应用:采用信号失真比、信号干扰比及信号伪影比等标准指标评估模型性能。若结果满足要求,该模型可进一步应用于实际音分离任务。 借助MATLAB强大的矩阵运算功能与信号处理工具箱,上述步骤得以有效实施。需注意的是,多模态任务常需大量计算资源,处理大规模数据集时可能需要对代码进行优化或借助GPU加速。所提供的MATLAB脚本为多模态音分离研究奠定了基础,通过深入理解与运用这些脚本,研究者可更扎实地掌握音分离的原理,从而提升其在实用场景中的性能表现。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
代码下载地址: https://pan.quark.cn/s/9bc6344d4fe3 极验滑块验证码js逆向 背景介绍 2016年由于一些爱好就在刚极验的滑块,其实一直都破解了极验的协议,极验在6.0.0之后,使用了控制流平坦化混淆。 当时(可能到现在)应该就我一个人能够实现他的控制流平坦化混淆的脱壳。 不过现在有过去一年多了,看起来协议对抗这块业界没有什么进展啊,正好我也不太可能做和极验对抗的工作了。 所以代码放到那里起灰多浪费,所以开源了吧。 我觉得里面的思路还是可以给大家一些参考的。 项目基于node 和java,node实现ast的处理已经通过node服务模拟符号混淆函数和控制流混淆器的流程控制引擎。 这个项目我当时也就一周做出来,其实是demo状态,在控制流还原那里的控制流反转ast代码模型的算法那里无法处理循环+break的代码结构。 比如 for + break 和while+break将会处理失败。 做这个东西的时候并没有完整的代码生成理论知识,知道当时协议破解完成之后,才对流程逆向生成这里有一些认识,后来总结了一个ppt。 https://virjar-comon.oss-cn-beijing.aliyuncs.com/02%20极验滑块.pptx 感兴趣的同学可以把里面的理论实现一遍。 对了,除了极验,还有一个淘宝滑块,也有控制流混淆。 理论上,都是可以搞定的。 emmm 操作步骤,由于是demo,很多地址直接绝对路径了 安装esprima 将极验的代码转化为ast对象 构造node server 启动java代码处理ast对象 运行java项目:/Users/virjar/git/geeEtacsufbo/ast-java/src/main/java/c...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值