【tulip】 - IOCP

为了让I/O阻塞的时候,程序还可以去干别的。除了使用线程模型,让操作系统的内核去调度多个线程,Windows提供了IOCP机制。简单来说就是一个操作系统提供的回调机制。分成四个步骤

  • 生成key,并建立映射关系:向操作系统创建一个key,程序内部把这个key和一个回调函数对应起来
  • 调用:执行阻塞的I/O操作,并指定key来对应这个I/O操作
  • 轮询,返回key:程序轮询操作系统询问是否有新的I/O操作完成,如果有完成的会返回对应的key
  • 用key查找,并回调:因为创建key的时候内部已经和一个回调函数对应起来了,所以这个时候之前映射好的函数会被回调

前面的例子太复杂了,我们把accept后面的操作全部忽略掉。单独看一个服务器接收客户端连接的代码:

import socket
from asyncio import _overlapped
import struct

listen_sock = socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM, proto=socket.IPPROTO_IP)
listen_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
listen_sock.bind(('0.0.0.0', 9090))
listen_sock.listen(0)
NULL = 0
concurrency=0xffffffff
_iocp = _overlapped.CreateIoCompletionPort(_overlapped.INVALID_HANDLE_VALUE, NULL, 0, concurrency)
_overlapped.CreateIoCompletionPort(listen_sock.fileno(), _iocp, 0, 0)
conn_sock = socket.socket(listen_sock.family)
conn_sock.settimeout(0)
ov = _overlapped.Overlapped(NULL)
ov.AcceptEx(listen_sock.fileno(), conn_sock.fileno())
def on_accepted():
    buf = struct.pack('@P', listen_sock.fileno())
    conn_sock.setsockopt(socket.SOL_SOCKET, _overlapped.SO_UPDATE_ACCEPT_CONTEXT, buf)
    conn_sock.settimeout(listen_sock.gettimeout())
    print('connected from %s:%s' % conn_sock.getpeername())
    return conn_sock, conn_sock.getpeername()
callback_map = {}
if ov.pending:
    callback_map[ov.address] = on_accepted
else:
    on_accepted()
while True:
    # wait maximum 1 second
    status = _overlapped.GetQueuedCompletionStatus(_iocp, 1000)
    if status is None:
        continue # try again
    err, transferred, key, address = status
    callback = callback_map[address]
    callback()
    break

这段代码使用了Python 3.4。其中 _overlapped.Overlapped(NULL) 这一步是创建key,ov.AcceptEx(listen_sock.fileno(), conn_sock.fileno()) 是做一个I/O调用,后面的 _overlapped.GetQueuedCompletionStatus(_iocp, 1000) 是轮询,callback_map[address] 这一步是根据返回的key查找对应的回调函数回调。
这种实现方式与前面基于线程的方式显著不同:

  • 程序内状态的上下文的保存不再由操作系统负责,而是通过callback_map由程序代码自己来负责的
  • 操作系统只负责维护阻塞I/O操作与对应的key(也就是overlapped.address这个东西)的关系。程序内的多个并发流程(本例子里只有一个客户端)需要由程序自身通过key和callback_map来自己做调度。

这样状态从多个线程的多个栈上,变成了只有一个线程,但是在线程内部有一个callback_map来维护单线程内多个并发流程的状态。某种程度上来说,相对于多线程是把一些操作系统的上下文保存和调度职责从操作系统内核移到了网络程序里。

标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值