用Quartz进行作业调度

本文介绍Quartz API,一种用于Java应用程序的开源作业调度框架。通过详细示例,文章展示了如何使用Quartz进行作业和触发器的配置,实现定时任务。

现代的 Web 应用程序框架在范围和复杂性方面都有所发展,应用程序的每个底层组件也必须相应地发展。作业调度是现代系统中对 Java 应用程序的一般要求,而且也是对 Java 开发人员一贯的要求。虽然目前的调度技术比起原始的数据库触发器标志和独立的调度器线程来说,已经发展了许多,但是作业调度仍然不是个小问题。对这个问题最合适的解决方案就是来自 OpenSymphony 的 Quartz API。

Quartz 是个开源的作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。Quartz 允许开发人员根据时间间隔(或天)来调度作业。它实现了作业和触发器的多对多关系,还能把多个作业与不同的触发器关联。整合了 Quartz 的应用程序可以重用来自不同事件的作业,还可以为一个事件组合多个作业。虽然可以通过属性文件(在属性文件中可以指定 JDBC 事务的数据源、全局作业和/或触发器侦听器、插件、线程池,以及更多)配置 Quartz,但它根本没有与应用程序服务器的上下文或引用集成在一起。结果就是作业不能访问 Web 服务器的内部函数;例如,在使用 WebSphere 应用服务器时,由 Quartz 调度的作业并不能影响服务器的动态缓存和数据源。

本文使用一系列代码示例介绍 Quartz API,演示它的机制,例如作业、触发器、作业仓库和属性。

 

要开始使用 Quartz,需要用 Quartz API 对项目进行配置。步骤如下:

  1. 下载 Quartz API
  2. 解压缩并把 quartz-x.x.x.jar 放在项目文件夹内,或者把文件放在项目的类路径中。
  3. 把 core 和/或 optional 文件夹中的 jar 文件放在项目的文件夹或项目的类路径中。
  4. 如果使用 JDBCJobStore,把所有的 JDBC jar 文件放在项目的文件夹或项目的类路径中。

为了方便读者,我已经把所有必要的文件,包括 DB2 JDBC 文件,编译到一个 zip 文件中。请参阅 下载 小节下载代码。

现在来看一下 Quartz API 的主要组件。

 

作业和触发器

Quartz 调度包的两个基本单元是作业和触发器。作业 是能够调度的可执行任务,触发器 提供了对作业的调度。虽然这两个实体很容易合在一起,但在 Quartz 中将它们分离开来是有原因的,而且也很有益处。

通过把要执行的工作与它的调度分开,Quartz 允许在不丢失作业本身或作业的上下文的情况下,修改调度触发器。而且,任何单个的作业都可以有多个触发器与其关联。

 

示例 1:作业

通过实现 org.quartz.job 接口,可以使 Java 类变成可执行的。清单 1 提供了 Quartz 作业的一个示例。这个类用一条非常简单的输出语句覆盖了 execute(JobExecutionContext context) 方法。这个方法可以包含我们想要执行的任何代码(所有的代码示例都基于 Quartz 1.5.2,它是编写这篇文章时的稳定发行版)。

 

请注意,execute 方法接受一个 JobExecutionContext 对象作为参数。这个对象提供了作业实例的运行时上下文。特别地,它提供了对调度器和触发器的访问,这两者协作来启动作业以及作业的 JobDetail 对象的执行。Quartz 通过把作业的状态放在 JobDetail 对象中并让 JobDetail 构造函数启动一个作业的实例,分离了作业的执行和作业周围的状态。JobDetail 对象储存作业的侦听器、群组、数据映射、描述以及作业的其他属性。

 

示例 2:简单触发器

触发器可以实现对任务执行的调度。Quartz 提供了几种不同的触发器,复杂程度各不相同。清单 2 中的 SimpleTrigger 展示了触发器的基础:


清单 2. SimpleTriggerRunner.java

 

清单 2 开始时实例化一个 SchedulerFactory,获得此调度器。就像前面讨论过的,创建 JobDetail 对象时,它的构造函数要接受一个 Job 作为参数。顾名思义,SimpleTrigger 实例相当原始。在创建对象之后,设置几个基本属性以立即调度任务,然后每 10 秒重复一次,直到作业被执行 100 次。

还有其他许多方式可以操纵 SimpleTrigger。除了指定重复次数和重复间隔,还可以指定作业在特定日历时间执行,只需给定执行的最长时间或者优先级(稍后讨论)。执行的最长时间可以覆盖指定的重复次数,从而确保作业的运行不会超过最长时间。

 

示例 3: Cron 触发器

CronTrigger 支持比 SimpleTrigger 更具体的调度,而且也不是很复杂。基于 cron 表达式,CronTrigger 支持类似日历的重复间隔,而不是单一的时间间隔 —— 这相对 SimpleTrigger 而言是一大改进。

Cron 表达式包括以下 7 个字段:

  • 小时
  • 月内日期
  • 周内日期
  • 年(可选字段)

特殊字符

Cron 触发器利用一系列特殊字符,如下所示:

  • 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。
  • 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。
  • 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。
  • 井号(#)字符为给定月份指定具体的工作日实例。把“MON#2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。
  • 星号(*)字符是通配字符,表示该字段可以接受任何可能的值。

所有这些定义看起来可能有些吓人,但是只要几分钟练习之后,cron 表达式就会显得十分简单。

清单 3 显示了 CronTrigger 的一个示例。请注意 SchedulerFactorySchedulerJobDetail 的实例化,与 SimpleTrigger 示例中的实例化是相同的。在这个示例中,只是修改了触发器。这里指定的 cron 表达式(“0/5 * * * * ?”)安排任务每 5 秒执行一次。


清单 3. CronTriggerRunner.java

 

<script src="http://pagead2.googlesyndication.com/pagead/show_ads.js" type="text/javascript"></script>

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值