04-树6 Complete Binary Search Tree(30 分)

本文探讨了如何从一组非负整数键中构建一个既为二叉搜索树又为完全二叉树的数据结构。通过定义完全二叉树和二叉搜索树的性质,文章详细解释了构建过程,并提供了实现这一构造的C语言代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

04-树6 Complete Binary Search Tree(30 分)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N(≤1000)N (≤1000)N(1000). Then NNN distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#define MAXN 1000

//按顺序输出结果(层次遍历)
void Output(int T[], int n) {
	for (int i = 0; i < n; i++) {
		if (i == 0) printf("%d", T[i]);
		else printf(" %d", T[i]);
	}
	printf("\n");
}

//获取一个含有n个结点的完全二叉树的层数
int GetLevel(int n) {
	int count = 0;
	while (n) {
		count++;
		n /= 2;
	}
	return count;
}

//获取一个n层的满二叉树的总结点数
int GetSum(int level) {
	if (level < 1) return 0;
	int sum = 1;
	for (int i = 0; i < level; i++) sum *= 2;
	return --sum;
}

//获取一个满二叉树第n层结点的个数
int GetLevelSum(int level) {
	if (level < 1) return 0;
	int sum = 1;
	for (int i = 0; i < level - 1; i++) sum *= 2;
	return sum;
}

//获取一个含有n个结点的完全二叉树的左子树的节点数
int GetLeftLength(int n) {
	int Level = GetLevel(n), sum = 0;
	sum += GetSum(Level - 2);
	sum += (n - GetSum(Level - 1) < GetLevelSum(Level) / 2) ? n - GetSum(Level - 1) : GetLevelSum(Level) / 2;
	return sum;
}

//递归求解
void solve(int input[], int tree[], int inputLeft, int inputRight, int treeRoot) {
	int n = inputRight - inputLeft + 1, L, leftTreeRoot, rightTreeRoot;
	if (n == 0) return;
	L = GetLeftLength(n);
	tree[treeRoot] = input[inputLeft + L];
	leftTreeRoot = treeRoot * 2 + 1;
	rightTreeRoot = leftTreeRoot + 1;
	solve(input, tree, inputLeft, inputLeft + L - 1, leftTreeRoot);
	solve(input, tree, inputLeft + L + 1, inputRight, rightTreeRoot);
}

//比较函数,qsort函数会用到
int compare(const void* a, const void* b) {
	return *(int*)a - *(int*)b;
}

int main(void) {
	int n, input[MAXN], tree[MAXN];
	scanf("%d", &n);
	for (int i = 0; i < n; i++) {
		scanf("%d", &input[i]);
	}
	//对输入序列按从大到小的顺序排序
	qsort(input, n, sizeof(int), compare);
	//递归求解
	solve(input, tree, 0, n - 1, 0);
	Output(tree, n);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值