微软智力题

第一组    
  1.烧一根不均匀的绳,从头烧到尾总共需要1个小时。现在有若干条材质相同的绳子,问如何用烧绳的方法来计时一个小时十五分钟呢?

  2.你有一桶果冻,其中有黄色、绿色、红色三种,闭上眼睛抓取同种颜色的两个。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

  3.如果你有无穷多的水,一个3公升的提捅,一个5公升的提捅,两只提捅形状上下都不均匀,问你如何才能准确称出4公升的水?

  4.一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?

  5.12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)

  6.9个点上画10条直线,要求每条直线上至少有三个点?

  7.在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?都分别是什么时间?你怎样算出来的?

  8.怎么样种植4棵树木,使其中任意两棵树的距离相等?
 
 
PS:呵呵,虽然变态了点,但是确实经典啊~~
明天中午贴贴答案!顺便再发一些题目。
(虽然在csdn的论坛里面有全部的,呵呵!)
内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值