数据结构学习笔记六:二叉堆

本文是数据结构中关于二叉堆的学习笔记。介绍了二叉堆是完全或近似完全二元树,分最大堆和最小堆,一般用数组实现。重点对最大堆的添加和删除操作进行图文解析,还提及了二叉堆的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据结构学习笔记六:二叉堆

二叉堆的介绍

二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。

二叉堆一般都通过"数组"来实现,下面是数组实现的最大堆和最小堆的示意图:在这里插入图片描述

二叉堆的图文解析

图文解析是以"最大堆"来进行介绍的。
最大堆的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍,其它内容请参考后面的完整源码。

1. 添加

假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:在这里插入图片描述
如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。

2.删除

假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:在这里插入图片描述
如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。

注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!
在这里插入图片描述

二叉堆的实现

import java.util.ArrayList;
import java.util.List;

public class MaxHeap<T> extends Comparable<T>>{
	private List<T> mHeap;
	public MaxHeap(){
		this.mHeap = new ArrayListt<T>();
	}

	protected void filterdown(int start, int end){
		int c = start;
		int l = 2*c+1;
		T cmp = mHeap.get(c);
		
		while(l <= end){
			int cmp = mHeap.get(l).comparableTo(mHeap.get(l+1));
			if(l<end && cmp<0){
				l++;
			}
			cmp = tmp.compareTo(mHeap.get(l));
			if(cmp>0){
				break;
			}else{
				mHeap.set(c,mHeap.get(l));
				c=l;
				l=2*l+1;
			}
			mHeap.set(c,tmp);
	 }
	
	
    /*
     * 删除最大堆中的data
     *
     * 返回值:
     *      0,成功
     *     -1,失败
     */
    public int remove(T data) {
        // 如果"堆"已空,则返回-1
        if(mHeap.isEmpty() == true)
            return -1;

        // 获取data在数组中的索引
        int index = mHeap.indexOf(data);
        if (index==-1)
            return -1;

        int size = mHeap.size();
        mHeap.set(index, mHeap.get(size-1));// 用最后元素填补
        mHeap.remove(size - 1);                // 删除最后的元素

        if (mHeap.size() > 1)
            filterdown(index, mHeap.size()-1);    // 从index号位置开始自上向下调整为最小堆

        return 0;
    }

    /*
     * 最大堆的向上调整算法(从start开始向上直到0,调整堆)
     *
     * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *
     * 参数说明:
     *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
     */
    protected void filterup(int start) {
        int c = start;            // 当前节点(current)的位置
        int p = (c-1)/2;        // 父(parent)结点的位置 
        T tmp = mHeap.get(c);        // 当前节点(current)的大小

        while(c > 0) {
            int cmp = mHeap.get(p).compareTo(tmp);
            if(cmp >= 0)
                break;
            else {
                mHeap.set(c, mHeap.get(p));
                c = p;
                p = (p-1)/2;   
            }       
        }
        mHeap.set(c, tmp);
    }
      
    /* 
     * 将data插入到二叉堆中
     */
    public void insert(T data) {
        int size = mHeap.size();

        mHeap.add(data);    // 将"数组"插在表尾
        filterup(size);        // 向上调整堆
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for (int i=0; i<mHeap.size(); i++)
            sb.append(mHeap.get(i) +" ");

        return sb.toString();
    }			
内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值