.rodata处理实践(嵌入式)

博客主要探讨了数据存储段相关问题。阐述了产生原因,涉及switch语法、初始化数据及printf与.rodata.str1.4的关联。说明了数据通常存储于.text段,若CPU不能load该段数据则存于其他段,如.data。还提到若.rodata不存于.text,系统boot时需load数据,可查map。最后介绍了几个有用工具。

 

1. 产生原因:
  1)switch语法;
  2)初始化数据:
      int data[8] = {1, 2 , 3};
  3) printf("xxx. %d", x);  -> 与 section: .rodata.str1.4 相关, OPT=-O2

2. 通常存储与.text, 如果cpu 不能load .text段的数据,就要存储与别的段。如 .data:
MEMORY
        {
        flash  : ORIGIN = @core_code_base@, LENGTH = @core_code_size@
        ram    : ORIGIN = 0x00000000, LENGTH = @core_code_size@
        }
 
SECTIONS
{
      .text :
        {
        *(.text)

        } > flash
      .bss :
        {
        *(.bss)
        } > ram
      .data :
        {
        *(.data)
        *(.rodata)
        } > ram
}

3. 如果.rodata不存于.text, 系统boot时,需要load 数据至对应的.rodata段空间,可查map:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .text             PROGBITS        03a00000 004000 0464f4 00  AX  0   0 16
  [ 2] .rodata.str1.4    PROGBITS        03a464f4 04a4f4 0187c8 01 AMS  0   0  4
  [ 3] .bss              NOBITS          00000000 001000 002a88 00  WA  0   0  8
  [ 4] .data             PROGBITS        00002a88 003a88 0004e0 00  WA  0   0  4
  [ 5] .comment          PROGBITS        00000000 062cbc 000011 01  MS  0   0  1
  [ 6] .symtab           SYMTAB          00000000 062cd0 003590 10      7 207  4
  [ 7] .strtab           STRTAB          00000000 066260 00420e 00      0   0  1
  [ 8] .shstrtab         STRTAB          00000000 06a46e 000044 00      0   0  1

4. 几个超有用的工具:
#: ld  $(LDFLAG)  -T ld_script -Map out_map -o out.exe LIBS
#:   objcopy --only-section .data -O binary elf_file out.data.bin    //输出文件可以用于.rodata初始化
#:   objcopy --only-section .text -O binary elf_file out.text.bin
#:   objdump -Mno-aliases,numeric -d elf_file > elf_file.od
#:   readelf -a elf_file > elf_file.elf.txt
 

/* * Copyright 2021-2025 HPMicro * SPDX-License-Identifier: BSD-3-Clause */ ENTRY(_start) STACK_SIZE = DEFINED(_stack_size) ? _stack_size : 0x4000; HEAP_SIZE = DEFINED(_heap_size) ? _heap_size : 64K; FLASH_SIZE = DEFINED(_flash_size) ? _flash_size : 1M; NONCACHEABLE_SIZE = DEFINED(_noncacheable_size) ? _noncacheable_size : 512K; MEMORY { XPI0 (rx) : ORIGIN = 0x80000000, LENGTH = 1024k ILM (wx) : ORIGIN = 0x00000000, LENGTH = 128K DLM (w) : ORIGIN = 0x00200000, LENGTH = 128K AXI_SRAM (wx) : ORIGIN = 0x01200000, LENGTH = 256K AHB_SRAM (w) : ORIGIN = 0xF0200000, LENGTH = 32k } __nor_cfg_option_load_addr__ = ORIGIN(XPI0) + 0x400; __boot_header_load_addr__ = ORIGIN(XPI0) + 0x1000; __app_load_addr__ = ORIGIN(XPI0) + 0x3000; __boot_header_length__ = __boot_header_end__ - __boot_header_start__; __app_offset__ = __app_load_addr__ - __boot_header_load_addr__; SECTIONS { .nor_cfg_option __nor_cfg_option_load_addr__ : { KEEP(*(.nor_cfg_option)) } > XPI0 .boot_header __boot_header_load_addr__ : { __boot_header_start__ = .; KEEP(*(.boot_header)) KEEP(*(.fw_info_table)) KEEP(*(.dc_info)) __boot_header_end__ = .; } > XPI0 .start __app_load_addr__ : { . = ALIGN(8); KEEP(*(.start)) } > XPI0 __vector_load_addr__ = ADDR(.start) + SIZEOF(.start); .vectors : AT(__vector_load_addr__) { . = ALIGN(8); __vector_ram_start__ = .; KEEP(*(.vector_table)) KEEP(*(.isr_vector)) . = ALIGN(8); __vector_ram_end__ = .; } > ILM .fast : AT(etext + __data_end__ - __tdata_start__) { . = ALIGN(8); __ramfunc_start__ = .; *(.fast) /* RT-Thread Core Start */ KEEP(*context_gcc.o(.text* .rodata*)) KEEP(*port*.o (.text .text* .rodata .rodata*)) KEEP(*interrupt_gcc.o (.text .text* .rodata .rodata*)) KEEP(*trap_common.o (.text .text* .rodata .rodata*)) KEEP(*irq.o (.text .text* .rodata .rodata*)) KEEP(*clock.o (.text .text* .rodata .rodata*)) KEEP(*kservice.o (.text .text* .rodata .rodata*)) KEEP(*scheduler.o (.text .text* .rodata .rodata*)) KEEP(*trap*.o (.text .text* .rodata .rodata*)) KEEP(*idle.o (.text .text* .rodata .rodata*)) KEEP(*ipc.o (.text .text* .rodata .rodata*)) KEEP(*thread.o (.text .text* .rodata .rodata*)) KEEP(*object.o (.text .text* .rodata .rodata*)) KEEP(*timer.o (.text .text* .rodata .rodata*)) KEEP(*mem.o (.text .text* .rodata .rodata*)) KEEP(*mempool.o (.text .text* .rodata .rodata*)) /* RT-Thread Core End */ /* HPMicro Driver Wrapper */ KEEP(*drv_*.o (.text .text* .rodata .rodata*)) . = ALIGN(8); __ramfunc_end__ = .; } > ILM .text (__vector_load_addr__ + __vector_ram_end__ - __vector_ram_start__) : { . = ALIGN(8); *(.text) *(.text*) *(.rodata) *(.rodata*) *(.srodata) *(.srodata*) *(.hash) *(.dyn*) *(.gnu*) *(.pl*) KEEP(*(.eh_frame)) *(.eh_frame*) KEEP (*(.init)) KEEP (*(.fini)) . = ALIGN(8); /********************************************* * * RT-Thread related sections - Start * *********************************************/ /* section information for finsh shell */ . = ALIGN(4); __fsymtab_start = .; KEEP(*(FSymTab)) __fsymtab_end = .; . = ALIGN(4); __vsymtab_start = .; KEEP(*(VSymTab)) __vsymtab_end = .; . = ALIGN(4); . = ALIGN(4); __rt_init_start = .; KEEP(*(SORT(.rti_fn*))) __rt_init_end = .; . = ALIGN(4); /* section information for modules */ . = ALIGN(4); __rtmsymtab_start = .; KEEP(*(RTMSymTab)) __rtmsymtab_end = .; /* RT-Thread related sections - end */ /* section information for usbh class */ . = ALIGN(8); __usbh_class_info_start__ = .; KEEP(*(.usbh_class_info)) __usbh_class_info_end__ = .; } > XPI0 .rel : { KEEP(*(.rel*)) } > XPI0 PROVIDE (__etext = .); PROVIDE (_etext = .); PROVIDE (etext = .); .fast_ram (NOLOAD) : { KEEP(*(.fast_ram)) } > DLM .bss(NOLOAD) : { . = ALIGN(8); __bss_start__ = .; *(.bss) *(.bss*) *(.sbss*) *(.scommon) *(.scommon*) *(.dynsbss*) *(COMMON) . = ALIGN(8); _end = .; __bss_end__ = .; } > AXI_SRAM /* Note: the .tbss and .tdata section should be adjacent */ .tbss(NOLOAD) : { . = ALIGN(8); __tbss_start__ = .; *(.tbss*) *(.tcommon*) _end = .; __tbss_end__ = .; } > AXI_SRAM .tdata : AT(etext) { . = ALIGN(8); __tdata_start__ = .; __thread_pointer = .; *(.tdata) *(.tdata*) . = ALIGN(8); __tdata_end__ = .; } > AXI_SRAM .data : AT(etext + __tdata_end__ - __tdata_start__) { . = ALIGN(8); __data_start__ = .; __global_pointer$ = . + 0x800; *(.data) *(.data*) *(.sdata) *(.sdata*) KEEP(*(.jcr)) KEEP(*(.dynamic)) KEEP(*(.got*)) KEEP(*(.got)) KEEP(*(.gcc_except_table)) KEEP(*(.gcc_except_table.*)) . = ALIGN(8); PROVIDE(__preinit_array_start = .); KEEP(*(.preinit_array)) PROVIDE(__preinit_array_end = .); . = ALIGN(8); PROVIDE(__init_array_start = .); KEEP(*(SORT_BY_INIT_PRIORITY(.init_array.*))) KEEP(*(.init_array)) PROVIDE(__init_array_end = .); . = ALIGN(8); PROVIDE(__fini_array_start = .); KEEP(*(SORT_BY_INIT_PRIORITY(.fini_array.*))) KEEP(*(.fini_array)) PROVIDE(__fini_array_end = .); . = ALIGN(8); PROVIDE(__ctors_start__ = .); KEEP(*crtbegin*.o(.ctors)) KEEP(*(EXCLUDE_FILE (*crtend*.o) .ctors)) KEEP(*(SORT(.ctors.*))) KEEP(*(.ctors)) PROVIDE(__ctors_end__ = .); . = ALIGN(8); KEEP(*crtbegin*.o(.dtors)) KEEP(*(EXCLUDE_FILE (*crtend*.o) .dtors)) KEEP(*(SORT(.dtors.*))) KEEP(*(.dtors)) . = ALIGN(8); __data_end__ = .; PROVIDE (__edata = .); PROVIDE (_edata = .); PROVIDE (edata = .); } > AXI_SRAM __fw_size__ = __data_end__ - __tdata_start__ + etext - __app_load_addr__; .heap(NOLOAD) : { . = ALIGN(8); __heap_start__ = .; . += HEAP_SIZE; __heap_end__ = .; } > DLM .framebuffer (NOLOAD) : { . = ALIGN(8); KEEP(*(.framebuffer)) . = ALIGN(8); } > AXI_SRAM .stack(NOLOAD) : { . = ALIGN(8); __stack_base__ = .; . += STACK_SIZE; . = ALIGN(8); PROVIDE (_stack = .); PROVIDE (_stack_in_dlm = .); PROVIDE( __rt_rvstack = . ); } > DLM .noncacheable.init : AT(etext + __data_end__ - __tdata_start__ + __ramfunc_end__ - __ramfunc_start__) { . = ALIGN(8); __noncacheable_init_start__ = .; KEEP(*(.noncacheable.init)) __noncacheable_init_end__ = .; . = ALIGN(8); } > DLM .noncacheable.bss (NOLOAD) : { . = ALIGN(8); KEEP(*(.noncacheable)) KEEP(*(.noncacheable.non_init)) KEEP(*(.noncacheable.non_init.*)) __noncacheable_bss_start__ = .; KEEP(*(.noncacheable.bss)) KEEP(*(.noncacheable.bss.*)) __noncacheable_bss_end__ = .; . = ALIGN(8); } > DLM .ahb_sram (NOLOAD) : { KEEP(*(.ahb_sram)) } > AHB_SRAM /* __noncacheable_start__ = ORIGIN(NONCACHEABLE_RAM); __noncacheable_end__ = ORIGIN(NONCACHEABLE_RAM) + LENGTH(NONCACHEABLE_RAM); */ }
09-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值