iOS 5 中的自动内存计数(ARC)

本文详细介绍了Objective-C中自动引用计数(ARC)的使用方法,包括其工作原理、限制条件、如何正确使用以及与其他技术的交互。通过遵循最佳实践,开发者可以简化对象生命周期管理,避免手动调用 retain、release等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Automatic Reference Counting (ARC) is a compiler-level feature that simplifies the process of managing the lifetimes of Objective-C objects. Instead of you having to remember when to retain or release an object, ARC evaluates the lifetime requirements of your objects and automatically inserts the appropriate method calls at compile time.


To be able to deliver these features, ARC imposes some restrictions—primarily enforcing some best practices and disallowing some other practices:

  • Do not call the retain, release, autorelease, or dealloc methods in your code.In addition, you cannot implement custom retain or release methods.
    Because you do not call the release method, there is often no need to implement a custom dealloc method—the compiler synthesizes all that is required to relinquish ownership of instance variables. You can provide a custom implementation of dealloc if you need to manage other resources. 
  • Do not store object pointers in C structures.Store object pointers in other objects instead of in structures.
  • Do not directly cast between object and nonobject types (for example, between id and void*).You must use special functions or casts that tell the compiler about an object’s lifetime. You use these to cast between Objective-C objects and Core Foundation objects.
  • You cannot use NSAutoreleasePool objects.Instead, you must use a new @autoreleasepool keyword to mark the start of an autorelease block. The contents of the block are enclosed by curly braces, as shown in the following example:
    • @autoreleasepool
    • {
    •   // Your code here
    • }

ARC encourages you to think in terms of object graphs, and the relationships between objects, rather than in terms of retain and release. For this reason, ARC introduces new lifetime qualifiers for objects, including zeroing weak references. The value of a zeroing weak reference is automatically set to nil if the object to which it points is deallocated. There are qualifiers for variables, and new weak and strong declared property attributes, as illustrated in the following examples:

// The following declaration is a synonym for: @property(retain) MyClass *myObject;


@property(strong) MyClass *myObject;


 


// The following declaration is similar to "@property(assign) MyOtherClass *delegate;"


// except that if the MyOtherClass instance is deallocated,


// the property value is set to nil instead of remaining as a dangling pointer


@property(weak) MyOtherClass *delegate;


Xcode provides migration tools to help convert existing projects to use ARC. For more information about how to perform this migration, see What's New In Xcode. For more information about ARC itself, see Programming With ARC Release Notes.


内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值