主要内容
- Lambda 表达式 ☆
- 函数式接口
- 方法引用与构造器引用
- Stream API ☆
- 接口中的默认方法与静态方法
- 新时间日期 API
- 其他新特性
其中最为核心的为 Lambda 表达式与Stream API
新特性简介
- 速度更快
- 代码更少(增加了新的语法 Lambda 表达式)
- 强大的 Stream API
- 便于并行
- 最大化减少空指针异常 Optional
Java8中:HashMap底层是的实现有所变化(链表改为红黑树),ConcurrentHashMap也有所变化,Java内存模型也有改变
Lambda
1.匿名函数
Lambda 是一个匿名函数,我们可以把 Lambda表达式理解为是 一段可以传递的代码(将代码像数据一样进行传递)。可以写出更简洁、更灵活的代码。作为一种更紧凑的代码风格,使Java的语言表达能力得到了提升。
//匿名内部类
@Test
public void test1(){
Comparator<String> com = new Comparator<String>(){
@Override
public int compare(String o1, String o2) {
return Integer.compare(o1.length(), o2.length());
}
};
TreeSet<String> ts = new TreeSet<>(com);
TreeSet<String> ts2 = new TreeSet<>(new Comparator<String>(){
@Override
public int compare(String o1, String o2) {
return Integer.compare(o1.length(), o2.length());
}
});
}
//Lambda表达式
@Test
public void test2(){
Comparator<String> com = (x, y) -> Integer.compare(x.length(), y.length());
TreeSet<String> ts = new TreeSet<>(com);
//TreeSet<String> ts = new TreeSet<>((x, y) -> Integer.compare(x.length(), y.length());
}
2.演变过程
冗余代码 --> 策略模式 --> 匿名内部类 --> Lambda表达式
//需求:获取公司中工资大于 5000 的员工信息
public List<Employee> filterEmployeeSalary(List<Employee> emps){
List<Employee> list = new ArrayList<>();
for (Employee emp : emps) {
if(emp.getSalary() >= 5000){
list.add(emp);
}
}
return list;
}
//优化方式一:策略设计模式
public List<Employee> filterEmployee(List<Employee> emps, MyPredicate<Employee> mp){
List<Employee> list = new ArrayList<>();
for (Employee employee : emps) {
if(mp.test(employee)){
list.add(employee);
}
}
return list;
}
@Test
public void test4(){
List<Employee> list = filterEmployee(emps, new FilterEmployeeForAge());
for (Employee employee : list) {
System.out.println(employee);
}
System.out.println("------------------------------------------");
List<Employee> list2 = filterEmployee(emps, new FilterEmployeeForSalary());
for (Employee employee : list2) {
System.out.println(employee);
}
}
//优化方式二:匿名内部类
@Test
public void test5(){
List<Employee> list = filterEmployee(emps, new MyPredicate<Employee>() {
@Override
public boolean test(Employee t) {
return t.getId() <= 103;
}
});
for (Employee employee : list) {
System.out.println(employee);
}
}
//优化方式三:Lambda 表达式
@Test
public void test6(){
List<Employee> list = filterEmployee(emps, (e) -> e.getAge() <= 35);
list.forEach(System.out::println);
System.out.println("------------------------------------------");
List<Employee> list2 = filterEmployee(emps, (e) -> e.getSalary() >= 5000);
list2.forEach(System.out::println);
}
//优化方式四:Stream API
@Test
public void test7(){
emps.stream()
.filter((e) -> e.getAge() <= 35)
.forEach(System.out::println);
System.out.println("----------------------------------------------");
emps.stream()
.map(Employee::getName)
.limit(3)
.sorted()
.forEach(System.out::println);
}
3. Lambda语法
->
该操作符被称为Lambda操作符
或剪头操作符
。它将 Lambda 分为两个部分:
- 左侧:指定了 Lambda 表达式需要的所有参数
- 右侧:指定了 Lambda 体,即 Lambda 表达式要执行的功能
口诀:
- 写死小括号,拷贝右箭头,落地大括号
- 左右遇一括号省
- 左侧推断类型省
- 能省则省
3.1 无参,无返回值
() -> System.out.println("Hello Lambda!");
@Test
public void test1(){
int num = 0;//jdk 1.7 前,必须是 final
Runnable r = new Runnable() {
@Override
public void run() {
System.out.println("Hello World!" + num);
}
};
r.run();
System.out.println("-------------------------------");
Runnable r1 = () -> System.out.println("Hello Lambda!");
r1.run();
}
3.2 有一个参数,并且无返回值
若只有一个参数,小括号可以省略不写
(x) -> System.out.println(x);
x -> System.out.println(x);
public void test2(){
Consumer<String> con = x -> System.out.println(x);
con.accept("Hello One");
}
3.3 有两个以上的参数,有返回值,并且 Lambda 体中有多条语句
Comparator<Integer> com = (x, y) -> {
System.out.println("函数式接口");
return Integer.compare(x, y);
};
3.4 若 Lambda 体中只有一条语句, return 和 大括号都可以省略不写
Comparator<Integer> com = (x, y) -> Integer.compare(x, y);
3.5 Lambda 表达式的参数列表的数据类型可以省略不写
Lambda 表达式中的参数类型都是由编译器推断得出的。Lambda 表达式中无需指定类型,程序依然可以编译,这是因为 javac 根据程序的上下文,在后台
推断出了参数的类型。Lambda 表达式的类型依赖于上下文环境,是由编译器推断出来的。这就是所谓的“类型推断”
(Integer x, Integer y) -> Integer.compare(x, y);
(x, y) -> Integer.compare(x, y);
@Test
public void test4(){
Comparator<Integer> com = (x, y) -> Integer.compare(x, y);
}
@Test
public void test5(){
// String[] strs;
// strs = {"aaa", "bbb", "ccc"};
List<String> list = new ArrayList<>();
show(new HashMap<>());
}
public void show(Map<String, Integer> map){
}
//需求:对一个数进行运算
@Test
public void test6(){
Integer num = operation(100, (x) -> x * x);
System.out.println(num);
System.out.println(operation(200, (y) -> y + 200));
}
public Integer operation(Integer num, MyFun mf){
return mf.getValue(num);
}
函数式接口
1. 说明
- 只包含一个抽象方法的接口,称为 函数式接口。
- 你可以通过 Lambda 表达式来创建该接口的对象。(若 Lambda表达式抛出一个受检异常,那么该异常需要在目标接口的抽象方法上进行声明)。
- 我们可以在任意函数式接口上使用
@FunctionalInterface
注解,这样做可以检查它是否是一个函数式接口,同时 javadoc 也会包含一条声明,说明这个接口是一个函数式接口。
2. 自定义函数式接口
- 定义一个函数式接口
@FunctionalInterface
public interface MyFun {
Integer count(Integer a, Integer b);
}
- 用一下
@Test
public void test05(){
MyFun myFun1 = (a, b) -> a + b;
MyFun myFun2 = (a, b) -> a - b;
MyFun myFun3 = (a, b) -> a * b;
MyFun myFun4 = (a, b) -> a / b;
}
- 再用一下
public Integer operation(Integer a, Integer b, MyFun myFun){
return myFun.count(a, b);
}
@Test
public void test06(){
Integer result = operation(1, 2, (x, y) -> x + y);
System.out.println(result);
}
作为递 参数传递 Lambda 将 表达式:为了将 Lambda 表达式作为参数传递,接收 Lambda 该 表达式的参数类型必须是与该 Lambda 表达式兼容的函数式接口的类型。
3. Java 内置四大核心函数式接
函数式接口 | 参数类型 | 返回类型 | 用途 |
---|---|---|---|
Consumer 消费型接口 | T | void | 对类型为T的对象应用操作:void accept(T t) |
Supplier 提供型接口 | 无 | T | 返回类型为T的对象:T get() |
Function<T, R> 函数型接口 | T | R | 对类型为T的对象应用操作,并返回结果为R类型的对象:R apply(T t) |
Predicate 断言型接口 | T | boolean | 确定类型为T的对象是否满足某约束,并返回boolean值:boolean test(T t) |
//Predicate<T> 断言型接口:
@Test
public void test4(){
List<String> list = Arrays.asList("Hello", "kaka", "Lambda", "www", "ok");
List<String> strList = filterStr(list, (s) -> s.length() > 3);
for (String str : strList) {
System.out.println(str);
}
}
//需求:将满足条件的字符串,放入集合中
public List<String> filterStr(List<String> list, Predicate<String> pre){
List<String> strList = new ArrayList<>();
for (String str : list) {
if(pre.test(str)){
strList.add(str);
}
}
return strList;
}
//Function<T, R> 函数型接口:
@Test
public void test3(){
String newStr = strHandler("\t\t\t Nice to meet you ", (str) -> str.trim());
System.out.println(newStr);
String subStr = strHandler("Good good study", (str) -> str.substring(2, 5));
System.out.println(subStr);
}
//需求:用于处理字符串
public String strHandler(String str, Function<String, String> fun){
return fun.apply(str);
}
//Supplier<T> 供给型接口 :
@Test
public void test2(){
List<Integer> numList = getNumList(10, () -> (int)(Math.random() * 100));
for (Integer num : numList) {
System.out.println(num);
}
}
//需求:产生指定个数的整数,并放入集合中
public List<Integer> getNumList(int num, Supplier<Integer> sup){
List<Integer> list = new ArrayList<>();
for (int i = 0; i < num; i++) {
Integer n = sup.get();
list.add(n);
}
return list;
}
//Consumer<T> 消费型接口 :
@Test
public void test1(){
happy(10000, (m) -> System.out.println("买一只笔,消费:" + m + "元"));
}
public void happy(double money, Consumer<Double> con){
con.accept(money);
}
4. 其他接口
函数式接口 | 参数类型 | 返回类型 | 用途 |
---|---|---|---|
BiFunction<T,U,R> | T,U | R | 对类型为 T, U 参数应用操作,返回 R 类型的结果。包含方法为R apply(T t, U u); |
UnaryOperator (Function 子接口) | T | T | 对类型为T的对象进行一元运算,并返回T类型的结果。包含方法为T apply(T t); |
BinaryOperator(BiFunction子接口) | T,T | T | 对类型为T的对象进行二元运算,并返回T类型的结果。包含方法为T apply(T t1, T t2); |
BiConsumer<T,U> | T,U | void | 对类型为T, U 参数应用操作。包含方法为void accept(T t, U u) |
ToIntFunction ToLongFunction ToDoubleFunction | T | int long double | 分 别 计 算 int 、 long 、double值的函数 |
IntFunction LongFunction DoubleFunction | int long double | R | 参数分别为int、long、double 类型的函数 |
方法引用与构造器引用
1. 方法引用
当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用!方法引用:使用操作符 ::
将方法名和对象或类的名字分隔开来。如下三种主要使用情况 :
- 对象 :: 实例方法
- 类 :: 静态方法
- 类 :: 实例方法
注意:
①方法引用所引用的方法的参数列表与返回值类型,需要与函数式接口中抽象方法的参数列表和返回值类型保持一致!
②若Lambda 的参数列表的第一个参数,是实例方法的调用者,第二个参数(或无参)是实例方法的参数时,格式: ClassName::MethodName
//对象的引用 :: 实例方法名
@Test
public void test2(){
Employee emp = new Employee(101, "张三", 18, 9999.99);
Supplier<String> sup = () -> emp.getName();
System.out.println(sup.get());
System.out.println("----------------------------------");
Supplier<String> sup2 = emp::getName;
System.out.println(sup2.get());
}
@Test
public void test1(){
PrintStream ps = System.out;
Consumer<String> con = (str) -> ps.println(str);
con.accept("Hello World!");
System.out.println("--------------------------------");
Consumer<String> con2 = ps::println;
con2.accept("Hello Java8!");
Consumer<String> con3 = System.out::println;
}
//类名 :: 静态方法名
@Test
public void test4(){
Comparator<Integer> com = (x, y) -> Integer.compare(x, y);
System.out.println("-------------------------------------");
Comparator<Integer> com2 = Integer::compare;
}
@Test
public void test3(){
BiFunction<Double, Double, Double> fun = (x, y) -> Math.max(x, y);
System.out.println(fun.apply(1.5, 22.2));
System.out.println("--------------------------------------------------");
BiFunction<Double, Double, Double> fun2 = Math::max;
System.out.println(fun2.apply(1.2, 1.5));
}
//类名 :: 实例方法名
@Test
public void test5(){
BiPredicate<String, String> bp = (x, y) -> x.equals(y);
System.out.println(bp.test("abcde", "abcde"));
System.out.println("-----------------------------------------");
BiPredicate<String, String> bp2 = String::equals;
System.out.println(bp2.test("abc", "abc"));
System.out.println("-----------------------------------------");
Function<Employee, String> fun = (e) -> e.show();
System.out.println(fun.apply(new Employee()));
System.out.println("-----------------------------------------");
Function<Employee, String> fun2 = Employee::show;
System.out.println(fun2.apply(new Employee()));
}
2. 构造器引用
构造器的参数列表,需要与函数式接口中参数列表保持一致!
与函数式接口相结合,自动与函数式接口中方法兼容。可以把构造器引用赋值给定义的方法,与构造器参数列表要与接口中抽象方法的参数列表一致!
- 类名 :: new
//构造器引用
@Test
public void test6(){
Supplier<Employee> sup = () -> new Employee();
System.out.println(sup.get());
System.out.println("------------------------------------");
Supplier<Employee> sup2 = Employee::new;
System.out.println(sup2.get());
}
@Test
public void test7(){
Function<String, Employee> fun = Employee::new;
BiFunction<String, Integer, Employee> fun2 = Employee::new;
}
3. 数组引用
- 类型[] :: new
//数组引用
@Test
public void test8(){
Function<Integer, String[]> fun = (args) -> new String[args];
String[] strs = fun.apply(10);
System.out.println(strs.length);
System.out.println("--------------------------");
Function<Integer, Employee[]> fun2 = Employee[] :: new;
Employee[] emps = fun2.apply(20);
System.out.println(emps.length);
}
public class Employee {
private int id;
private String name;
private int age;
private double salary;
public Employee() {
}
public Employee(String name) {
this.name = name;
}
public Employee(String name, int age) {
this.name = name;
this.age = age;
}
public Employee(int id, String name, int age, double salary) {
this.id = id;
this.name = name;
this.age = age;
this.salary = salary;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public double getSalary() {
return salary;
}
public void setSalary(double salary) {
this.salary = salary;
}
public String show() {
return "测试方法引用!";
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + age;
result = prime * result + id;
result = prime * result + ((name == null) ? 0 : name.hashCode());
long temp;
temp = Double.doubleToLongBits(salary);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Employee other = (Employee) obj;
if (age != other.age)
return false;
if (id != other.id)
return false;
if (name == null) {
if (other.name != null)
return false;
} else if (!name.equals(other.name))
return false;
if (Double.doubleToLongBits(salary) != Double.doubleToLongBits(other.salary))
return false;
return true;
}
@Override
public String toString() {
return "Employee [id=" + id + ", name=" + name + ", age=" + age + ", salary=" + salary + "]";
}
}
Stream API
集合讲的是数据,流讲的是计算。
Stream API( java.util.stream .*)。 Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用Stream API 对集合数据进行操作。也可以使用 Stream API 来并行执行操作。
注意:
- Stream 自己不会存储元素。
- Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
- Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
1. 使用步骤
- 创建 Stream
一个数据源(如:集合、数组),获取一个流 - 中间操作
一个中间操作链,对数据源的数据进行处理 - 终止操作(终端操作)
一个终止操作,执行中间操作链,并产生结果
上面的markdown画图工具mermaid
2.创建流
2.1 由Collection接口创建
Java8 中的 Collection 接口被扩展,提供了两个获取流的方法 :
- default Stream stream() : 返回一个顺序流
- default Stream parallelStream() : 返回一个并行流
//1. Collection 提供了两个方法 stream() 与 parallelStream()
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //获取一个顺序流
Stream<String> parallelStream = list.parallelStream(); //获取一个并行流
2.2 由数组创建流
Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:
- static Stream stream(T[] array): 返回一个流
重载形式,能够处理对应基本类型的数组:
- public static IntStream stream(int[] array)
- public static LongStream stream(long[] array)
- public static DoubleStream stream(double[] array)
//2. 通过 Arrays 中的 stream() 获取一个数组流
Integer[] nums = new Integer[10];
Stream<Integer> stream1 = Arrays.stream(nums);
2.3 由值创建流
可以使用静态方法 Stream.of(), 通过显示值创建一个流。它可以接收任意数量的参数。
- public static Stream of(T… values) : 返回一个流
//3. 通过 Stream 类中静态方法 of()
Stream<Integer> stream2 = Stream.of(1,2,3,4,5,6);
2.4 由函数创建流:创建无限流
可以使用静态方法 Stream.iterate() 和Stream.generate(), 创建无限流。
- 迭代
public static Stream iterate(final T seed, final UnaryOperator f) - 生成
public static Stream generate(Supplier s)
//4. 创建无限流
//迭代
Stream<Integer> stream3 = Stream.iterate(0, (x) -> x + 2).limit(10);
stream3.forEach(System.out::println);
//生成
Stream<Double> stream4 = Stream.generate(Math::random).limit(2);
stream4.forEach(System.out::println);
3. Stream 中间操作
多个 中间操作可以连接起来形成一个 流水线,除非流水线上触发终止操作,否则 中间操作不会执行任何的 处理!而在 终止操作时一次性全部 处理,称为“惰性求值”
3.1 筛选与切片
方法 | 描述 |
---|---|
filter(Predicate p) | 接收 Lambda , 从流中排除某些元素。 |
distinct() | 筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素 |
limit(long maxSize) | 截断流,使其元素不超过给定数量。 |
skip(long n) | 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补 |
/*
筛选与切片
filter——接收 Lambda , 从流中排除某些元素。
limit——截断流,使其元素不超过给定数量。
skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
distinct——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
*/
//内部迭代:迭代操作 Stream API 内部完成
@Test
public void test2(){
//所有的中间操作不会做任何的处理
Stream<Employee> stream = emps.stream()
.filter((e) -> {
System.out.println("测试中间操作");
return e.getAge() <= 35;
});
//只有当做终止操作时,所有的中间操作会一次性的全部执行,称为“惰性求值”
stream.forEach(System.out::println);
}
//外部迭代
@Test
public void test3(){
Iterator<Employee> it = emps.iterator();
while(it.hasNext()){
System.out.println(it.next());
}
}
@Test
public void test4(){
emps.stream()
.filter((e) -> {
System.out.println("短路!"); // && ||
return e.getSalary() >= 5000;
}).limit(3)
.forEach(System.out::println);
}
@Test
public void test5(){
emps.parallelStream()
.filter((e) -> e.getSalary() >= 5000)
.skip(2)
.forEach(System.out::println);
}
@Test
public void test6(){
emps.stream()
.distinct()
.forEach(System.out::println);
}
3.2 映射
方法 | 描述 |
---|---|
map(Function f) | 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 |
mapToDouble(ToDoubleFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。 |
mapToInt(ToIntFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。 |
mapToLong(ToLongFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。 |
flatMap(Function f) | 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流 |
@Test
public void test1(){
Stream<String> str = emps.stream()
.map((e) -> e.getName());
System.out.println("-------------------------------------------");
List<String> strList = Arrays.asList("aaa", "bbb", "ccc", "ddd", "eee");
Stream<String> stream = strList.stream()
.map(String::toUpperCase);
stream.forEach(System.out::println);
Stream<Stream<Character>> stream2 = strList.stream()
.map(TestStreamAPI1::filterCharacter);
stream2.forEach((sm) -> {
sm.forEach(System.out::println);
});
System.out.println("---------------------------------------------");
Stream<Character> stream3 = strList.stream()
.flatMap(TestStreamAPI1::filterCharacter);
stream3.forEach(System.out::println);
}
public static Stream<Character> filterCharacter(String str){
List<Character> list = new ArrayList<>();
for (Character ch : str.toCharArray()) {
list.add(ch);
}
return list.stream();
}
3.3 排序
方法 | 描述 |
---|---|
sorted() | 产生一个新流,其中按自然顺序排序 |
sorted(Comparator comp) | 产生一个新流,其中按比较器顺序排序 |
/*
sorted()——自然排序
sorted(Comparator com)——定制排序
*/
@Test
public void test2(){
emps.stream()
.map(Employee::getName)
.sorted()
.forEach(System.out::println);
System.out.println("------------------------------------");
emps.stream()
.sorted((x, y) -> {
if(x.getAge() == y.getAge()){
return x.getName().compareTo(y.getName());
}else{
return Integer.compare(x.getAge(), y.getAge());
}
}).forEach(System.out::println);
}
4. Stream 的终止操作
终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。
4.1 查找与匹配
方法 | 描述 |
---|---|
allMatch(Predicate p) | 检查是否匹配所有元素 |
anyMatch(Predicate p) | 检查是否至少匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配所有元素 |
findFirst() | 返回第一个元素 |
findAny() | 返回当前流中的任意元素 |
count() | 返回流中元素总数 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
forEach(Consumer c) | 内部迭代( (用 使用 Collection 接口需要用户去做迭代,称为 外部迭代 。相反, Stream API 使用内部迭代 ——它帮你把迭代做了 |
@Test
public void test1(){
boolean bl = emps.stream()
.allMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl);
boolean bl1 = emps.stream()
.anyMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl1);
boolean bl2 = emps.stream()
.noneMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl2);
}
@Test
public void test2(){
Optional<Employee> op = emps.stream()
.sorted((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()))
.findFirst();
System.out.println(op.get());
System.out.println("--------------------------------");
Optional<Employee> op2 = emps.parallelStream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.findAny();
System.out.println(op2.get());
}
@Test
public void test3(){
long count = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.count();
System.out.println(count);
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.max(Double::compare);
System.out.println(op.get());
Optional<Employee> op2 = emps.stream()
.min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
System.out.println(op2.get());
}
//注意:流进行了终止操作后,不能再次使用
@Test
public void test4(){
Stream<Employee> stream = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE));
long count = stream.count();
stream.map(Employee::getSalary)
.max(Double::compare);
}
4.2 归约
方法 | 描述 |
---|---|
reduce(T iden, BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 T |
reduce(BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 Optional |
@Test
public void test1(){
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
Integer sum = list.stream()
.reduce(0, (x, y) -> x + y);
System.out.println(sum);
System.out.println("----------------------------------------");
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.reduce(Double::sum);
System.out.println(op.get());
}
//需求:搜索名字中 “六” 出现的次数
@Test
public void test2(){
Optional<Integer> sum = emps.stream()
.map(Employee::getName)
.flatMap(TestStreamAPI1::filterCharacter)
.map((ch) -> {
if(ch.equals('六'))
return 1;
else
return 0;
}).reduce(Integer::sum);
System.out.println(sum.get());
}
4.3 收集
方法 | 描述 |
---|---|
collect(Collector c) | 将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法 |
Collector 接口中方法的实现决定了如何对流执行收集操作(如收集到 List、Set、Map)。但是 Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下表:
方法 | 返回类型 | 作用 | 例子 |
---|---|---|---|
toList | List | 把流中元素收集到List | List emps= list.stream().collect(Collectors.toList()); |
toSet | Set | 把流中元素收集到Set | Set emps= list.stream().collect(Collectors.toSet()); |
toCollection | Collection | 把流中元素收集到创建的集合 | Collectionemps=list.stream().collect(Collectors.toCollection(ArrayList::new)); |
counting | Long | 计算流中元素的个数 | long count = list.stream().collect(Collectors.counting()); |
summingInt | Integer | 对流中元素的整数属性求和 | inttotal=list.stream().collect(Collectors.summingInt(Employee::getSalary)); |
averagingInt | Double | 计算流中元素Integer属性的平均值 | doubleavg= list.stream().collect(Collectors.averagingInt(Employee::getSalary)); |
summarizingInt | IntSummaryStatistics | 收集流中Integer属性的统计值。如:平均值 | IntSummaryStatisticsiss= list.stream().collect(Collectors.summarizingInt(Employee::getSalary)); |
joining | String | 连接流中每个字符串 | String str= list.stream().map(Employee::getName).collect(Collectors.joining()); |
maxBy | Optional | 根据比较器选择最大值 | Optionalmax= list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary))); |
minBy | Optional | 根据比较器选择最小值 | Optional min = list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary))); |
reducing | 归约产生的类型 | 从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值 | int total=list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum)); |
collectingAndThen | 转换函数返回的类型 | 包裹另一个收集器,对其结果转换函数 | int how= list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size)); |
groupingBy | Map<K, List> | 根据某属性值对流分组,属性为K,结果为V | Map<Emp.Status, List> map= list.stream().collect(Collectors.groupingBy(Employee::getStatus)); |
partitioningBy | Map<Boolean, List> | 根据true或false进行分区 | Map<Boolean,List> vd= list.stream().collect(Collectors.partitioningBy(Employee::getManage)); |
@Test
public void test1(){
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
Integer sum = list.stream()
.reduce(0, (x, y) -> x + y);
System.out.println(sum);
System.out.println("----------------------------------------");
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.reduce(Double::sum);
System.out.println(op.get());
}
//需求:搜索名字中 “六” 出现的次数
@Test
public void test2(){
Optional<Integer> sum = emps.stream()
.map(Employee::getName)
.flatMap(TestStreamAPI1::filterCharacter)
.map((ch) -> {
if(ch.equals('六'))
return 1;
else
return 0;
}).reduce(Integer::sum);
System.out.println(sum.get());
}
//collect——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
@Test
public void test3(){
List<String> list = emps.stream()
.map(Employee::getName)
.collect(Collectors.toList());
list.forEach(System.out::println);
System.out.println("----------------------------------");
Set<String> set = emps.stream()
.map(Employee::getName)
.collect(Collectors.toSet());
set.forEach(System.out::println);
System.out.println("----------------------------------");
HashSet<String> hs = emps.stream()
.map(Employee::getName)
.collect(Collectors.toCollection(HashSet::new));
hs.forEach(System.out::println);
}
@Test
public void test4(){
Optional<Double> max = emps.stream()
.map(Employee::getSalary)
.collect(Collectors.maxBy(Double::compare));
System.out.println(max.get());
Optional<Employee> op = emps.stream()
.collect(Collectors.minBy((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())));
System.out.println(op.get());
Double sum = emps.stream()
.collect(Collectors.summingDouble(Employee::getSalary));
System.out.println(sum);
Double avg = emps.stream()
.collect(Collectors.averagingDouble(Employee::getSalary));
System.out.println(avg);
Long count = emps.stream()
.collect(Collectors.counting());
System.out.println(count);
System.out.println("--------------------------------------------");
DoubleSummaryStatistics dss = emps.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println(dss.getMax());
}
//分组
@Test
public void test5(){
Map<Status, List<Employee>> map = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus));
System.out.println(map);
}
//多级分组
@Test
public void test6(){
Map<Status, Map<String, List<Employee>>> map = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus, Collectors.groupingBy((e) -> {
if(e.getAge() >= 60)
return "老年";
else if(e.getAge() >= 35)
return "中年";
else
return "成年";
})));
System.out.println(map);
}
//分区
@Test
public void test7(){
Map<Boolean, List<Employee>> map = emps.stream()
.collect(Collectors.partitioningBy((e) -> e.getSalary() >= 5000));
System.out.println(map);
}
//
@Test
public void test8(){
String str = emps.stream()
.map(Employee::getName)
.collect(Collectors.joining("," , "----", "----"));
System.out.println(str);
}
@Test
public void test9(){
Optional<Double> sum = emps.stream()
.map(Employee::getSalary)
.collect(Collectors.reducing(Double::sum));
System.out.println(sum.get());
}
5. 并行流与串行流
并行流 就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel() 与sequential() 在并行流与顺序流之间进行切换。
5.1 了解 Fork/Join
就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总。
5.2 Fork/Join 框架与传统线程池的区别
采用 “工作窃取”模式(work-stealing):
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因无法继续运行,那么该线程会处于等待状态.而在fork/join框架实现中,如果某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程的等待时间,提高了性能 。
import java.util.concurrent.RecursiveTask;
public class ForkJoinCalculate extends RecursiveTask<Long>{
/**
*
*/
private static final long serialVersionUID = 13475679780L;
private long start;
private long end;
private static final long THRESHOLD = 10000L; //临界值
public ForkJoinCalculate(long start, long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
long length = end - start;
if(length <= THRESHOLD){
long sum = 0;
for (long i = start; i <= end; i++) {
sum += i;
}
return sum;
}else{
long middle = (start + end) / 2;
ForkJoinCalculate left = new ForkJoinCalculate(start, middle);
left.fork(); //拆分,并将该子任务压入线程队列
ForkJoinCalculate right = new ForkJoinCalculate(middle+1, end);
right.fork();
return left.join() + right.join();
}
}
}
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
import org.junit.Test;
public class TestForkJoin {
@Test
public void test1(){
long start = System.currentTimeMillis();
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinCalculate(0L, 10000000000L);
long sum = pool.invoke(task);
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("耗费的时间为: " + (end - start));
}
@Test
public void test2(){
long start = System.currentTimeMillis();
long sum = 0L;
for (long i = 0L; i <= 10000000000L; i++) {
sum += i;
}
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("耗费的时间为: " + (end - start)); //34-3174-3132-4227-4223-31583
}
@Test
public void test3(){
long start = System.currentTimeMillis();
Long sum = LongStream.rangeClosed(0L, 10000000000L)
.parallel()
.sum();
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("耗费的时间为: " + (end - start));
}
}
新时间日期API
1. 使用 LocalDate 、LocalTime 、LocalDateTime
LocalDate、LocalTime、LocalDateTime 类的实例是不可变的对象,分别表示使用 ISO-8601日历系统的日期、时间、日期和时间。它们提供了简单的日期或时间,并不包含当前的时间信息。也不包含与时区相关的信息。
注:ISO-8601日历系统是国际标准化组织制定的现代公民的日期和时间的表示法
方法 | 描述 | 示例 |
---|---|---|
now() | 静态方法,根据当前时间创建对象 | LocalDate localDate = LocalDate.now(); |
of() | 静态方法,根据指定日期/时间创建对象 | LocalDate localDate = LocalDate.of(2016, 10, 26); |
plusDays, plusWeeks,plusMonths, plusYears | 向当前 LocalDate 对象添加几天、几周、几个月、几年 | |
minusDays, minusWeeks,minusMonths, minusYears | 从当前 LocalDate 对象减去几天、几周、几个月、几年 | |
plus, minus | 添加或减少一个 Duration 或 Period | |
withDayOfMonth,withDayOfYear,withMonth,withYear | 将月份天数、年份天数、月份、年份修改为指定 的值 并返回新的LocalDate 对象 | |
getDayOfMonth | 获得月份天数(1-31) | |
getDayOfYear | 获得年份天数(1-366) | |
getDayOfWeek | 获得星期几(返回一个 DayOfWeek枚举值) | |
getMonth | 获得月份, 返回一个 Month 枚举值getMonthValue 获得月份(1-12) | |
getYear | 获得年份 | |
until | 获得两个日期之间的 Period 对象,或者指定 ChronoUnits 的数字 | |
isBefore, isAfter | 比较两个 LocalDate | |
isLeapYear | 判断是否是闰年 |
//1. LocalDate、LocalTime、LocalDateTime
@Test
public void test1(){
LocalDateTime ldt = LocalDateTime.now();
System.out.println(ldt);
LocalDateTime ld2 = LocalDateTime.of(2016, 11, 21, 10, 10, 10);
System.out.println(ld2);
LocalDateTime ldt3 = ld2.plusYears(20);
System.out.println(ldt3);
LocalDateTime ldt4 = ld2.minusMonths(2);
System.out.println(ldt4);
System.out.println(ldt.getYear());
System.out.println(ldt.getMonthValue());
System.out.println(ldt.getDayOfMonth());
System.out.println(ldt.getHour());
System.out.println(ldt.getMinute());
System.out.println(ldt.getSecond());
}
2. Instant
用于“时间戳”的运算。它是以Unix元年(传统的设定为UTC时区1970年1月1日午夜时分)开始所经历的描述进行运算
//2. Instant : 时间戳。 (使用 Unix 元年 1970年1月1日 00:00:00 所经历的毫秒值)
@Test
public void test2(){
Instant ins = Instant.now(); //默认使用 UTC 时区
System.out.println(ins);
OffsetDateTime odt = ins.atOffset(ZoneOffset.ofHours(8));
System.out.println(odt);
System.out.println(ins.getNano());
Instant ins2 = Instant.ofEpochSecond(5);
System.out.println(ins2);
}
3.Duration 和 Period
- Duration:用于计算两个“时间”间隔
- Period:用于计算两个“日期”间隔
@Test
public void test3(){
Instant ins1 = Instant.now();
System.out.println("--------------------");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
}
Instant ins2 = Instant.now();
System.out.println("所耗费时间为:" + Duration.between(ins1, ins2));
System.out.println("----------------------------------");
LocalDate ld1 = LocalDate.now();
LocalDate ld2 = LocalDate.of(2011, 1, 1);
Period pe = Period.between(ld2, ld1);
System.out.println(pe.getYears());
System.out.println(pe.getMonths());
System.out.println(pe.getDays());
}
4. 日期的操纵
- TemporalAdjuster : 时间校正器。有时我们可能需要获取例如:将日期调整到“下个周日”等操作。
- TemporalAdjusters : 该类通过静态方法提供了大量的常用 TemporalAdjuster 的实现。
//4. TemporalAdjuster : 时间校正器
@Test
public void test4(){
LocalDateTime ldt = LocalDateTime.now();
System.out.println(ldt);
LocalDateTime ldt2 = ldt.withDayOfMonth(10);
System.out.println(ldt2);
LocalDateTime ldt3 = ldt.with(TemporalAdjusters.next(DayOfWeek.SUNDAY));
System.out.println(ldt3);
//自定义:下一个工作日
LocalDateTime ldt5 = ldt.with((l) -> {
LocalDateTime ldt4 = (LocalDateTime) l;
DayOfWeek dow = ldt4.getDayOfWeek();
if(dow.equals(DayOfWeek.FRIDAY)){
return ldt4.plusDays(3);
}else if(dow.equals(DayOfWeek.SATURDAY)){
return ldt4.plusDays(2);
}else{
return ldt4.plusDays(1);
}
});
System.out.println(ldt5);
}
5. 解析与格式化
java.time.format.DateTimeFormatter 类:该类提供了三种格式化方法:
- 预定义的标准格式
- 语言环境相关的格式
- 自定义的格式
@Test
public void test5(){
// DateTimeFormatter dtf = DateTimeFormatter.ISO_LOCAL_DATE;
DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyy年MM月dd日 HH:mm:ss E");
LocalDateTime ldt = LocalDateTime.now();
String strDate = ldt.format(dtf);
System.out.println(strDate);
LocalDateTime newLdt = ldt.parse(strDate, dtf);
System.out.println(newLdt);
}
6. 时区处理
Java8 中加入了对时区的支持,带时区的时间为分别为:ZonedDate、ZonedTime、ZonedDateTime
其中每个时区都对应着 ID,地区ID都为 “{区域}/{城市}”的格式,例如 :Asia/Shanghai 等
ZoneId:该类中包含了所有的时区信息
- getAvailableZoneIds() : 可以获取所有时区时区信息
- of(id) : 用指定的时区信息获取 ZoneId 对象
@Test
public void test7(){
LocalDateTime ldt = LocalDateTime.now(ZoneId.of("Asia/Shanghai"));
System.out.println(ldt);
ZonedDateTime zdt = ZonedDateTime.now(ZoneId.of("US/Pacific"));
System.out.println(zdt);
}
@Test
public void test6(){
Set<String> set = ZoneId.getAvailableZoneIds();
set.forEach(System.out::println);
}
7. 与传统日期处理的转换
类 | To遗留类 | From遗留类 |
---|---|---|
java.time.Instant java.util.Date | Date.from(instant) | date.toInstant() |
java.time.Instant java.sql.Timestamp | Timestamp.from(instant) | timestamp.toInstant() |
java.time.ZonedDateTime java.util.GregorianCalendar | GregorianCalendar.from(zonedDateTime) | cal.toZonedDateTime() |
java.time.LocalDate java.sql.Time | Date.valueOf(localDate) | date.toLocalDate() |
java.time.LocalTime java.sql.Time | Date.valueOf(localDate) | date.toLocalTime() |
java.time.LocalDateTime java.sql.Timestamp | Timestamp.valueOf(localDateTime) | timestamp.toLocalDateTime() |
java.time.ZoneId java.util.TimeZone | Timezone.getTimeZone(id) | timeZone.toZoneId() |
java.time.format.DateTimeFormatter java.text.DateFormat | formatter.toFormat() | 无 |
@Test
public void test03(){
// Date 转 LocalDateTime
Date date = new Date();
Instant instant = date.toInstant();
ZoneId zoneId = ZoneId.systemDefault();
LocalDateTime localDateTime = instant.atZone(zoneId).toLocalDateTime();
// LocalDateTime 转 Date
LocalDateTime localDateTime = LocalDateTime.now();
ZoneId zoneId = ZoneId.systemDefault();
ZonedDateTime zdt = localDateTime.atZone(zoneId);
Date date = Date.from(zdt.toInstant());
接口中的默认方法与静态方法
1. 接口中的默认方法
Java 8中允许接口中包含具有具体实现的方法,该方法称为“默认方法”,默认方法使用 default
关键字修饰。
public interface MyFun {
default String getName(){
return "哈哈哈";
}
}
public interface MyInterface {
default String getName(){
return "呵呵呵";
}
}
-
接口默认方法的 ” 类优先 ”
若一个接口中定义了一个默认方法,而另外一个父类或接口中又定义了一个同名的方法时
- 选择父类中的方法。如果一个父类提供了具体的实现,那么接口中具有相同名称和参数的默认方法会被忽略。
- 接口冲突。如果一个父接口提供一个默认方法,而另一个接口也提供了一个具有相同名称和参数列表的方法(不管方法是否是默认方法),那么必须覆盖该方法来解决冲突
public class SubClass /*extends MyClass*/ implements MyFun, MyInterface{
@Override
public String getName() {
return MyInterface.super.getName();
}
}
2. 接口中的静态方法
public interface MyInterface {
default String getName(){
return "呵呵呵";
}
public static void show(){
System.out.println("接口中的静态方法");
}
}
public class TestDefaultInterface {
public static void main(String[] args) {
SubClass sc = new SubClass();
System.out.println(sc.getName());
MyInterface.show();
}
}
其他新特性
1. Optional 类
Optional 类(java.util.Optional) 是一个容器类,代表一个值存在或不存在,原来用 null 表示一个值不存在,现在 Optional 可以更好的表达这个概念。并且
可以避免空指针异常。
常用方法:
- Optional.of(T t) : 创建一个 Optional 实例
- Optional.empty() : 创建一个空的 Optional 实例
- Optional.ofNullable(T t):若 t 不为 null,创建 Optional 实例,否则创建空实例
- isPresent() : 判断是否包含值
- orElse(T t) : 如果调用对象包含值,返回该值,否则返回t
- orElseGet(Supplier s) :如果调用对象包含值,返回该值,否则返回 s 获取的值
- map(Function f): 如果有值对其处理,并返回处理后的Optional,否则返回 Optional.empty()
- flatMap(Function mapper):与 map 类似,要求返回值必须是Optional
@Test
public void test4(){
Optional<Employee> op = Optional.of(new Employee(101, "张三", 18, 9999.99));
Optional<String> op2 = op.map(Employee::getName);
System.out.println(op2.get());
Optional<String> op3 = op.flatMap((e) -> Optional.of(e.getName()));
System.out.println(op3.get());
}
@Test
public void test3(){
Optional<Employee> op = Optional.ofNullable(new Employee());
if(op.isPresent()){
System.out.println(op.get());
}
Employee emp = op.orElse(new Employee("张三"));
System.out.println(emp);
Employee emp2 = op.orElseGet(() -> new Employee());
System.out.println(emp2);
}
@Test
public void test2(){
/*Optional<Employee> op = Optional.ofNullable(null);
System.out.println(op.get());*/
// Optional<Employee> op = Optional.empty();
// System.out.println(op.get());
}
@Test
public void test1(){
Optional<Employee> op = Optional.of(new Employee());
Employee emp = op.get();
System.out.println(emp);
}
@Test
public void test5(){
Man man = new Man();
String name = getGodnessName(man);
System.out.println(name);
}
//需求:获取一个男人心中女神的名字
public String getGodnessName(Man man){
if(man != null){
Godness g = man.getGod();
if(g != null){
return g.getName();
}
}
return "苍老师";
}
//运用 Optional 的实体类
@Test
public void test6(){
Optional<Godness> godness = Optional.ofNullable(new Godness("林志玲"));
Optional<NewMan> op = Optional.ofNullable(new NewMan(godness));
String name = getGodnessName2(op);
System.out.println(name);
}
public String getGodnessName2(Optional<NewMan> man){
return man.orElse(new NewMan())
.getGodness()
.orElse(new Godness("苍老师"))
.getName();
}
2. 重复注解与类型注解
2.1 重复注解
Java 8对注解处理提供了两点改进:可重复的注解及可用于类型的注解。
定义注解:
@Repeatable(MyAnnotations.class) //指定容器类
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD, ElementType.TYPE_PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotation {
String value() default "Java 8";
}
定义容器:
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotations {
MyAnnotation[] value();
}
测试:
public class Test01 {
//重复注解
@Test
@MyAnnotation("Hello")
@MyAnnotation("World")
public void test01() throws NoSuchMethodException {
Class<Test01> clazz = Test01.class;
Method test01 = clazz.getMethod("test01");
MyAnnotation[] mas = test01.getAnnotationsByType(MyAnnotation.class);
for (MyAnnotation ma : mas) {
System.out.println(ma.value());
}
}
}
2.2 类型注解
Java 8 新增注解:新增ElementType.TYPE_USE 和ElementType.TYPE_PARAMETER(在Target上)
public void test01(@MyAnnotation("name") String str) {
}
以上内容主要是学习尚硅谷Java课程所做笔记,大部分源码来自于老师讲义