fail-fast究竟是个什么鬼

概念引入

首先我们看下维基百科中关于fail-fast的解释:

在系统设计中,快速失效系统一种可以立即报告任何可能表明故障的情况的系统。快速失效系统通常设计用于停止正常操作,而不是试图继续可能存在缺陷的过程。这种设计通常会在操作中的多个点检查系统的状态,因此可以及早检测到任何故障。快速失败模块的职责是检测错误,然后让系统的下一个最高级别处理错误。
其实,这是一种理念,fail-fast就是在做系统设计的时候先考虑异常情况,一旦发生异常,直接停止并上报

通过上面的解释,可以理解到快速失败是一种设计理念,这种设计理念是一种保护机制,目的是不让系统在可能存在缺陷(或异常)的情况下运行,就是说一旦有异常情况发生,就要停止系统的运行。

实例分析

public int divide(int divisor,int dividend){
    if(dividend == 0){
        throw new RuntimeException("dividend can't be null");
    }
    return divisor/dividend;
}

​ 上面的代码是对两个整数做除法的方法,在divide方法中,我们对被除数做了个简单的检查,如果其值为0,那么就直接抛出一个异常,并明确提示异常原因。这其实就是fail-fast理念的实际应用。
  这样做的好处就是可以预先识别出一些错误情况,一方面可以避免执行复杂的其他代码,另外一方面,这种异常情况被识别之后也可以针对性的做一些单独处理。
  怎么样,现在你知道fail-fast了吧,其实它并不神秘,你日常的代码中可能经常会在使用的。既然,fail-fast是一种比较好的机制,那为什么说fail-fast会有坑呢?
原因是Java的部分集合类中运用了fail-fast机制进行设计,一旦使用不当,触发fail-fast机制设计的代码,就会发生非预期情况。

集合类中的fail-fast

我们通常说的Java中的fail-fast机制,默认指的是Java集合的一种错误检测机制。当多个线程对部分集合进行结构上的改变的操作时,有可能会产生fail-fast机制,这个时候就会抛出ConcurrentModificationException。
ConcurrentModificationException通常在方法检测到对象发生了并发修改,但程序不允许这种修改时被抛出。很多时候正是因为代码中抛出了ConcurrentModificationException,很多程序员就会很困惑,明明自己的代码并没有在多线程环境中执行,为什么会抛出这种并发有关的异常呢?这种情况在什么情况下才会抛出呢?我们就来深入分析一下。

异常分析

List<String> userNames = new ArrayList<String>() {{
    add("Jobs");
    add("jobs");
    add("JobsSteven");
    add("J");
}};
for (String userName : userNames) {
    if (userName.equals("Jobs")) {
        userNames.remove(userName);
    }
}
System.out.println(userNames);

以上代码,使用增强for循环遍历元素,并尝试删除其中的Jobs字符串元素。运行以上代码,会抛出以下异常:

Exception in thread "main" java.util.ConcurrentModificationException
at java.util.ArrayList$Itr.checkForComodification(ArrayList.java:909)
at java.util.ArrayList$Itr.next(ArrayList.java:859)
at com.hollis.ForEach.main(ForEach.java:22)

同样的,读者可以尝试下在增强for循环中使用add方法添加元素,结果也会同样抛出该异常。在深入原理之前,我们先尝试把foreach进行解语法糖,看一下foreach具体如何实现的。

我们使用jad工具,对编译后的class进行反编译,得到以下代码:

public static void main(String[] args) {
    // 使用ImmutableList初始化一个List
    List<String> userNames = new ArrayList<String>() {{
		    add("Jobs");
		    add("jobs");
		    add("JobsSteven");
		    add("J");
    }};

    Iterator iterator = userNames.iterator();
    do
    {
        if(!iterator.hasNext())
            break;
        String userName = (String)iterator.next();
        if(userName.equals("Jobs"))
            userNames.remove(userName);
    } while(true);
    System.out.println(userNames);
}

可以发现,foreach其实是依赖了while循环和Iterator实现的。

异常原理

通过以上代码的异常堆栈,我们可以跟踪到真正抛出异常的代码是:

java.util.ArrayList$Itr.checkForComodification(ArrayList.java:909) 

该方法是在iterator.next()方法中调用的。我们看下该方法的实现:

final void checkForComodification() {
    if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
}

如上,在该方法中对modCount和expectedModCount进行了比较,如果二者不想等,则抛出ConcurrentModificationException。那么,modCount和expectedModCount是什么?是什么原因导致他们的值不想等的呢?modCount是ArrayList中的一个成员变量。它表示该集合实际被修改的次数。

List<String> userNames = new ArrayList<String>() {{
    add("Jobs");
    add("jobs");
    add("JobsSteven");
    add("J");
}};

当使用以上代码初始化集合之后该变量就有了。初始值为0。

expectedModCount 是 ArrayList中的一个内部类——Itr中的成员变量。

Iterator iterator = userNames.iterator();

以上代码,即可得到一个 Itr类,该类实现了Iterator接口。expectedModCount表示这个迭代器预期该集合被修改的次数。其值随着Itr被创建而初始化。只有通过迭代器对集合进行操作,该值才会改变。
那么,接着我们看下userNames.remove(userName);方法里面做了什么事情,为什么会导致expectedModCount和modCount的值不一样。
通过翻阅代码,我们也可以发现,remove方法核心逻辑如下:

private void fastRemove(int index) {
    modCount++;
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index,
                         numMoved);
    elementData[--size] = null; // clear to let GC do its work
}

可以看到,remove方法只修改了modCount,并没有对expectedModCount做任何操作。

再看一下内部类Itr的remove方法。

        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

expectedModCount = modCount; 这行代码将modCount赋给了expectedModCount,所以在后面调用checkForComodification() 时不会报错。关于cursor,lastRet的变化,可以再看看源码的next()方法,将两个方法结合起来看。原理就是next方法调用时,索引+1,移除了一个元素后,索引-1。

总结

简单总结一下,之所以会抛出ConcurrentModificationException异常,是因为我们的代码中使用了增强for循环,而在增强for循环中,集合遍历是通过Iterator进行的,但是元素的add/remove却是直接使用的集合类自己的方法。这就导致iterator在遍历的时候,会发现有一个元素在iterator自己不知不觉的情况下就被删除/添加了,就会抛出一个异常,用来提示用户,可能发生了并发修改!
  所以,在使用Java的集合类的时候,如果发生ConcurrentModificationException,优先考虑fail-fast有关的情况,实际上这里并没有真的发生并发,只是Iterator使用了fail-fast的保护机制,只要他发现有某一次修改是未经过iterator自己进行的,那么就会抛出异常。

这是一篇转载文章,笔者只是做了一点修改。原文地址:fail-fast究竟是个什么鬼?
吐槽一下优快云,没有转载功能,还要复制粘贴。。。

**高校专业实习管理平台设计与实现** 本设计项目旨在构建一个服务于高等院校专业实习环节的综合性管理平台。该系统采用当前主流的Web开发架构,基于Python编程语言,结合Django后端框架与Vue.js前端框架进行开发,实现了前后端逻辑的分离。数据存储层选用广泛应用的MySQL关系型数据库,确保了系统的稳定性和数据处理的效率。 平台设计了多角色协同工作的管理模型,具体包括系统管理员、院系负责人、指导教师、实习单位对接人以及参与实习的学生。各角色依据权限访问不同的功能模块,共同构成完整的实习管理流程。核心功能模块涵盖:基础信息管理(如院系、专业、人员信息)、实习过程管理(包括实习公告发布、实习内容规划、实习申请与安排)、双向反馈机制(单位评价与学生反馈)、实习支持与保障、以及贯穿始终的成绩评定与综合成绩管理。 在技术实现层面,后端服务依托Django框架的高效与安全性构建业务逻辑;前端界面则利用Vue.js的组件化特性与LayUI的样式库,致力于提供清晰、友好的用户交互体验。数据库设计充分考虑了实习管理业务的实体关系与数据一致性要求,并保留了未来功能扩展的灵活性。 整个系统遵循规范的软件开发流程,从需求分析、系统设计、编码实现到测试验证,均进行了多轮迭代与优化,力求在功能完备性、系统性能及用户使用体验方面达到较高标准。 **核心术语**:实习管理平台;Django框架;MySQL数据库;Vue.js前端;Python语言。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
在电磁散射与雷达技术的研究中,涉及粗糙表面电磁特性模拟的核心概念包括统计参数化建模方法、不同电场矢量方向的极化模式、特定方向的能量反射现象、理想化波前模型以及具有随机起伏特征的界面。以下是对这些要点的系统阐述: 统计参数化建模是一种基于表面统计特征描述其不规则性的电磁散射计算方法,尤其适用于均方根高度较小的粗糙界面在微波至毫米波频段的散射特性分析。 水平极化与垂直极化分别指电场矢量平行于地面和垂直于地面的振动状态。在雷达探测中,采用不同的极化模式有助于提升目标辨识度并抑制环境干扰。 当电磁波与物体相互作用时,部分能量沿接近入射方向返回,这种现象称为反向散射。其在雷达系统的探测灵敏度与目标特征分析中具有关键作用。 平面波是在均匀介质中传播的理想波型,其电场与磁场分布保持一致的相位关系,常作为理论简化模型用于电磁问题的解析与数值计算。 粗糙界面指具有随机起伏特征的表面,其不规则程度可通过均方根高度进行量化。这种结构特性会改变电磁波的传播路径与能量分布,进而影响信号的接收与处理。 相关压缩文件可能包含了实现上述建模方法的程序代码,通常采用数值计算语言编写,用于模拟不同极化状态下粗糙表面对平面波的反向散射响应。通过此类仿真,能够预测各类场景下的散射参数,为雷达系统设计与遥感数据解译提供理论依据。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值