fuzz paper list

本文汇总了近年来在模糊测试领域的研究成果,包括高效模糊测试、文件系统模糊测试、智能输入类型探测、内核竞争漏洞检测等。通过介绍如NEUZZ、ProFuzzer、Razzer等工具,展示了模糊测试在软件安全性提升方面的重要作用。
部署运行你感兴趣的模型镜像

2019

  • NEUZZ: Efficient Fuzzing with Neural Program Smoothing 🆗 PDF
  • Fuzzing File Systems via Two-Dimensional Input Space Exploration 🆗PDF
  • ProFuzzer: On-the-fly Input Type Probing for Better Zero-day Vulnerability Discovery 🆗PDF
  • Razzer: Finding Kernel Race Bugs through Fuzzing 🆗PDF
  • Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing 🆗PDF
  • MoonShine: Optimizing OS Fuzzer Seed Selection with Trace Distillation🆗PDF
  • QSYM : A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing🆗PDF
  • REDQUEEN: Fuzzing with Input-to-State Correspondence🆗PDF🔗
  • PeriScope: An Effective Probing and Fuzzing Framework for the Hardware-OS Boundary🆗PDF🔗
  • Life after Speech Recognition: Fuzzing Semantic Misinterpretation for Voice Assistant Applications🆗PDF
  • Send Hardest Problems My Way: Probabilistic Path Prioritization for Hybrid Fuzzing🆗PDF
  • CodeAlchemist: Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines🆗PDF🔗
  • DifFuzz: Differential Fuzzing for Side-Channel Analysis🆗PDF🔗
  • REST-ler: Stateful REST API Fuzzing🆗PDF
  • SLF: Fuzzing without Valid Seed Inputs🆗PDF
  • Superion: Grammar-Aware Greybox Fuzzing🆗PDF
  • Parser-Directed Fuzzing🆗PDF
  • MEMFUZZ: Using Memory Accesses to Guide Fuzzing🆗PDF

2018

  • T-Fuzz: fuzzing by program transformation 🆗PDF
    中文解读:http://www.pianshen.com/article/6742712144/
  • Angora: Efficient Fuzzing by Principled Search 🆗PDF
  • CollAFL: Path Sensitive Fuzzing 🆗PDF
  • Evaluating fuzz testing🆗PDF
  • Hawkeye Towards a Desired Directed Grey-box Fuzzer🆗PDF
  • IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based Fuzzing🆗PDF
  • What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices🆗PDF
  • Enhancing Memory Error Detection for Large-Scale Applications and Fuzz Testing🆗PDF
  • Singularity: Pattern Fuzzing for Worst Case Complexity🆗PDF
  • ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection🆗PDF
  • FairFuzz: A Targeted Mutation Strategy for Increasing Greybox Fuzz Testing Coverage🆗PDF
  • TIFF: Using Input Type Inference To Improve Fuzzing🆗PDF

2017

  • NEZHA: Efficient Domain-Independent Differential Testing 🆗PDF
  • kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels🆗PDF
  • Directed Greybox Fuzzing🆗PDF
  • Designing New Operating Primitives to Improve Fuzzing Performance🆗PDF
  • DIFUZE: Interface aware fuzzing for kernel drivers🆗PDF
  • VUzzer: Application-aware Evolutionary Fuzzing🆗PDF
  • Driller: Argumenting Fuzzing Through Selective Symbolic Execution🆗PDF

2016

  • Coverage-based Greybox Fuzzing as Markov Chain🆗PDF
  • Coverage-Directed Differential Testing of JVM Implementations🆗PDF

其他

开源fuzz工具列表

您可能感兴趣的与本文相关的镜像

ComfyUI

ComfyUI

AI应用
ComfyUI

ComfyUI是一款易于上手的工作流设计工具,具有以下特点:基于工作流节点设计,可视化工作流搭建,快速切换工作流,对显存占用小,速度快,支持多种插件,如ADetailer、Controlnet和AnimateDIFF等

作者:k0shl ####一些环境说明: 编译环境:Windows 10 x64 build 1607 项目IDE:VS2013 测试环境:Windows 7 x86、Windows 10 x86 build 1607 参数介绍: "-l" :开启日志记录模式(不会影响主日志记录模块) "-s" :驱动枚举模块 "-d" :打开设备驱动的名称 "-i" :待Fuzz的ioctl code,默认从0xnnnn0000-0xnnnnffff "-n" :在探测阶段采用null pointer模式,该模式下极易fuzz 到空指针引用漏洞,不加则常规探测模式 "-r" :指定明确的ioctl code范围 "-u" :只fuzz -i参数给定的ioctl code "-f" :在探测阶段采用0x00填充缓冲区 "-q" :在Fuzz阶段不显示填充input buffer的数据内容 "-e" :在探测和fuzz阶段打印错误信息(如getlasterror()) "-h" :帮助信息 ####常用Fuzz命令实例: kDriver Fuzz.exe -s 进行驱动枚举,将CreateFile成功的驱动设备名称,以及部分受限的驱动设备名称打印并写入Enum Driver.txt文件中 kDriver Fuzz.exe -d X -i 0xaabb0000 -f -l 对X驱动的ioctl code 0xaabb0000-0xaabbffff范围进行探测及对可用的ioctl code进行fuzz,探测时除了正常探测外增加0x00填充缓冲区探测,开启数据日志记录(如增加-u参数,则只对ioctl code 0xaabb0000探测,若是有效ioctl code则进入fuzz阶段) kDriver Fuzz.exe -d X -r 0xaabb1122-0xaabb3344 -n -l 对X驱动的ioctl code 0xaabb1122-0xaabb3344范围内进行探测,探测时采用null pointer模式,并数据日志记录
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值