# -*- coding: utf-8 -*-
"""
Created on Tue Jan 30 19:17:44 2018
@author: Administrator
"""
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn import datasets
from sklearn.metrics import mean_squared_error,explained_variance_score
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
#数据集
housing_data = datasets.load_boston()
X,y = shuffle(housing_data.data, housing_data.target, random_state=7)
num_training = int(0.8 * len(X))
X_train, y_train = X[:num_training], y[:num_training]
X_test, y_test = X[num_training:], y[num_training:]
#决策树回归
dt_regressor = DecisionTreeRegressor(max_depth=4)
dt_regressor.fit(X_train,y_train)
y_pred_dt = dt_regressor.predict(X_test)
mse = mean_squared_error(y_test, y_pred_dt)
evs = explained_variance_score(y_test,y_pred_dt)
print('均方误差:',round(mse,2))
print('解释方差分:',round(evs,2))
#AdaBoost算法
ab_regressor = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),n_estimators=400,random_state=7)
ab_regressor.fit(X_train,y_train)
y_pred_ab = ab_regressor.predict(X_test)
mse = mean_squared_error(y_test,y_pred_ab)
evs = explained_variance_score(y_test,y_pred_ab)
print('均方误差:',round(mse,2))
print('解释方差分:',round(evs,2))
结果:
均方误差: 14.79
解释方差分: 0.82
均方误差: 7.64
解释方差分: 0.91
from sklearn import tree
X = [[0, 0], [2, 2]]
y = [0.5, 2.5]
clf = tree.DecisionTreeRegressor()
clf = clf.fit(X, y)
clf.predict([[1, 1]])
决策树回归与AdaBoost算法
最新推荐文章于 2024-09-26 16:34:22 发布