AdaBoost

本文介绍了AdaBoost算法的历史、原理及其特性,包括算法错误率上界随迭代次数增加而下降的特点和避免过拟合的能力。此外,还探讨了如何将AdaBoost应用于多分类问题。

注:本文非笔者原创,原文转载自:http://www.cnblogs.com/luffylee/archive/2012/02/22/2363554.html


一、Boosting算法的发展历史

  Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合 为一个分类器的方法,即boostrapping方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。

  1)bootstrapping方法的主要过程

  主要步骤:

  i)重复地从一个样本集合D中采样n个样本

  ii)针对每次采样的子样本集,进行统计学习,获得假设Hi

  iii)将若干个假设进行组合,形成最终的假设Hfinal

  iv)将最终的假设用于具体的分类任务

  2)bagging方法的主要过程  -----bagging可以有多种抽取方法

  主要思路:

  i)训练分类器

  从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci

  ii)分类器进行投票,最终的结果是分类器投票的优胜结果

  但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。并由此而获得了2003年的哥德尔奖(Godel price)。

  Schapire还提出了一种早期的boosting算法,其主要过程如下:

  i)从样本整体集合D中,不放回的随机抽样nn个样本,得到集合 D1

  训练弱分类器C1

  ii)从样本整体集合D中,抽取 nn个样本,其中合并进一半被C1 分类错误的样本。得到样本集合 D2

  训练弱分类器C2

  iii)抽取D样本集合中,C1 和 C2 分类不一致样本,组成D3

  训练弱分类器C3

  iv)用三个分类器做投票,得到最后分类结果

  到了1995年,Freund and schapire提出了现在的adaboost算法,其主要框架可以描述为:

  i)循环迭代多次

  更新样本分布

  寻找当前分布下的最优弱分类器

  计算弱分类器误差率

  ii)聚合多次训练的弱分类器

  在下图中可以看到完整的adaboost算法:

图1.1  adaboost算法过程

  现在,boost算法有了很大的发展,出现了很多的其他boost算法,例如:logitboost算法,gentleboost算法等等。在这次报告中,我们将着重介绍adaboost算法的过程和特性。

二、Adaboost算法及分析

  从图1.1中,我们可以看到adaboost的一个详细的算法过程。Adaboost是一种比较有特点的算法,可以总结如下:

  1)每次迭代改变的是样本的分布,而不是重复采样(re weight)

  2)样本分布的改变取决于样本是否被正确分类

                  总是分类正确的样本权值低

                  总是分类错误的样本权值高(通常是边界附近的样本)

  3)最终的结果是弱分类器的加权组合

                  权值表示该弱分类器的性能

 

  简单来说,Adaboost有很多优点:

  1)adaboost是一种有很高精度的分类器

  2)可以使用各种方法构建子分类器,adaboost算法提供的是框架

  3)当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单

  4)简单,不用做特征筛选

  5)不用担心overfitting!

 

  总之:adaboost是简单,有效。

  下面我们举一个简单的例子来看看adaboost的实现过程:

  图中,“+”和“-”分别表示两种类别,在这个过程中,我们使用水平或者垂直的直线作为分类器,来进行分类。

  第一步:

  根据分类的正确率,得到一个新的样本分布D,一个子分类器h1

  其中划圈的样本表示被分错的。在右边的途中,比较大的“+”表示对该样本做了加权。

  第二步:

  根据分类的正确率,得到一个新的样本分布D3,一个子分类器h2

  第三步:

  得到一个子分类器h3

  整合所有子分类器:

  因此可以得到整合的结果,从结果中看,及时简单的分类器,组合起来也能获得很好的分类效果,在例子中所有的。

 

  Adaboost算法的某些特性是非常好的,在我们的报告中,主要介绍adaboost的两个特性。

一是训练的错误率上界,随着迭代次数的增加,会逐渐下降;

二是adaboost算法即使训练次数很多,也不会出现过拟合的问题。

 

  下面主要通过证明过程和图表来描述这两个特性:

  1)错误率上界下降的特性

  从而可以看出,随着迭代次数的增加,实际上错误率上界在下降。

  2)不会出现过拟合现象

  通常,过拟合现象指的是下图描述的这种现象,即随着模型训练误差的下降,实际上,模型的泛化误差(测试误差)在上升。横轴表示迭代的次数,纵轴表示训练误差的值。

而实际上,并没有观察到adaboost算法出现这样的情况,即当训练误差小到一定程度以后,继续训练,返回误差仍然不会增加。

  对这种现象的解释,要借助margin的概念,其中margin表示如下:

  通过引入margin的概念,我们可以观察到下图所出现的现象:

  从图上左边的子图可以看到,随着训练次数的增加,test的误差率并没有升高,同时对应着右边的子图可以看到,随着训练次数的增 加,margin一直在增加。这就是说,在训练误差下降到一定程度以后,更多的训练,会增加分类器的分类margin,这个过程也能够防止测试误差的上 升。

三、多分类adaboost

  在日常任务中,我们通常需要去解决多分类的问题。而前面的介绍中,adaboost算法只能适用于二分类的情况。因此,在这一小节中,我们着重介绍如何将adaboost算法调整到适合处理多分类任务的方法。

  目前有三种比较常用的将二分类adaboost方法。

  1、adaboost M1方法

  主要思路: adaboost组合的若干个弱分类器本身就是多分类的分类器。

  在训练的时候,样本权重空间的计算方法,仍然为:

  在解码的时候,选择一个最有可能的分类

  2、adaboost MH方法

  主要思路: 组合的弱分类器仍然是二分类的分类器,将分类label和分类样例组合,生成N个样本,在这个新的样本空间上训练分类器。

  可以用下图来表示其原理:

  3、对多分类输出进行二进制编码

  主要思路:对N个label进行二进制编码,例如用m位二进制数表示一个label。然后训练m个二分类分类器,在解码时生成m位的二进制数。从而对应到一个label上。

四、总结

  最后,我们可以总结下adaboost算法的一些实际可以使用的场景:

  1)用于二分类或多分类的应用场景

  2)用于做分类任务的baseline

        无脑化,简单,不会overfitting,不用调分类器

  3)用于特征选择(feature selection)

  4)Boosting框架用于对badcase的修正

        只需要增加新的分类器,不需要变动原有分类器

  由于adaboost算法是一种实现简单,应用也很简单的算法。Adaboost算法通过组合弱分类器而得到强分类器,同时具有分类错误率上界随着训练增加而稳定下降,不会过拟合等的性质,应该说是一种很适合于在各种分类场景下应用的算法。


### 算法原理 Adaboost算法的基本思路是在一组弱分类器的基础上,通过不断调整弱分类器权重与样本权重来构建强分类器。该算法事先给定一组弱分类器,在运行过程中,会增加分类误差大的样本的权重,减少分类误差小的样本的权重,然后通过样本误差进一步确定弱分类器的权重,使得误差越小的弱分类器权重越大[^3]。 ### 改进策略 鉴于Adaboost算法在实际应用中遇到的一些挑战,研究人员提出了多种改进策略。常见的改进方向是采用不同的弱分类器,或者对现有的分类器进行优化。例如,结合其他集成学习方法(如随机森林或梯度提升树)来增强分类器的多样性,引入正则化项来控制模型复杂度,防止过拟合。通过这些改进,Adaboost可以在保持其原有优势的同时,进一步提升对复杂数据集的处理能力[^1]。 ### 与其他算法融合 Softmax函数在AdaBoost算法中扮演重要角色,它用于将每个弱学习器的输出转换为概率分布,为最终的强分类器的输出提供概率值[^2]。 ### 使用方法 #### 调参技巧 - 增加`n_estimators`可以提高精度,但可能导致过拟合。 - 降低`learning_rate`可以增强泛化能力,但需要更多迭代。 - 更换`base_estimator`(如SVM、逻辑回归)可能提升性能[^4]。 #### 弱学习器选择 `base_estimator`是弱学习器,AdaBoostClassifier和AdaBoostRegressor都有。理论上可以选择任何一个分类或者回归学习器,不过需要支持样本权重。常用的一般是CART决策树或者神经网络MLP。如果选择的AdaBoostClassifier算法是SAMME.R,则弱分类学习器还需要支持概率预测,也就是在scikit - learn中弱分类学习器对应的预测方法除了`predict`还需要有`predict_proba`[^5]。 ### 应用场景 Adaboost适用于二分类问题,如垃圾邮件检测、人脸识别等。它通过组合多个弱分类器,构建高精度模型,核心是样本权重调整,让后续分类器更关注难样本[^4]。 ### 代码示例 ```python from sklearn.ensemble import AdaBoostClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 生成示例数据 X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建Adaboost分类器 clf = AdaBoostClassifier(n_estimators=100, learning_rate=1.0) # 训练模型 clf.fit(X_train, y_train) # 预测 y_pred = clf.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值