ReentrantReadWriteLock源码解析

本文介绍了读写锁的基本概念和工作原理,对比了互斥锁,突出了读写锁在读操作密集场景下的性能优势。通过源码分析展示了ReentrantReadWriteLock的内部实现,并给出一个简单的读写锁应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        为保证线程安全,经常用到的有内置锁synchronized和ReentrantLock。这两种是明显的互斥锁,每次最多只能有一个线程拥有锁。使用互斥锁可以有效避免“写读冲突”、“写写冲突”、“读读冲突”,从而保证线程安全。但是,很明显,“读读冲突”是不需要避免的,因为多个线程读并不会·出现线程安全问题。如果在读操作比较多的情景下,使用互斥锁,则会显得过于保守强硬,从而抑制了性能。因此引入了一种优化的锁,叫做读写锁,该锁主要表示:一个资源可以被多个读操作访问或者被一个写操作访问,且两者不能同时进行。这样对于读操作访问比较密集的数据结构,则大大提升了并发性能,提升了可伸缩性。

        读写锁实现ReadWriteLock接口,典型的有ReentrantReadWriteLock。接下来对该读写锁进行源码分析,并进行示例实现。

1.源码解析

        首先来看读写锁的基础接口:ReadWriteLock。该接口总共两个抽象方法,分别是readLock()和writeLock(),两个方法返回类型都是Lock类型,说明两者返回的是锁,分别是读锁和写锁。

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading
     */
    Lock readLock();

    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing
     */
    Lock writeLock();
}

        接下来看ReentrantReadWriteLock,该类扩展了ReadWriteLock接口。

首先是构造方法

 */
    public ReentrantReadWriteLock() {
        this(false);
    }

    /**
     * Creates a new {@code ReentrantReadWriteLock} with
     * the given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantReadWriteLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }

        构造方法中可以传入一个参数,fair值表示公平模式还是非公平模式,一般默认值是非公平模式。

然后是接口中两个方法的实现

public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
    public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }

而writerLock和readerLock是内部类ReadLock和WriteLock的对象。其中ReadLock和WriteLock实现了Lock接口以及实现了接口中的方法。

以下是WriteLock部分源码:

 protected WriteLock(ReentrantReadWriteLock lock) {
            sync = lock.sync;
        }

        /**
         * Acquires the write lock.
         *
         * <p>Acquires the write lock if neither the read nor write lock
         * are held by another thread
         * and returns immediately, setting the write lock hold count to
         * one.
         *
         * <p>If the current thread already holds the write lock then the
         * hold count is incremented by one and the method returns
         * immediately.
         *
         * <p>If the lock is held by another thread then the current
         * thread becomes disabled for thread scheduling purposes and
         * lies dormant until the write lock has been acquired, at which
         * time the write lock hold count is set to one.
         */
        public void lock() {
            sync.acquire(1);
        }

以下是ReadLock部分源码:

 protected ReadLock(ReentrantReadWriteLock lock) {
            sync = lock.sync;
        }

        /**
         * Acquires the read lock.
         *
         * <p>Acquires the read lock if the write lock is not held by
         * another thread and returns immediately.
         *
         * <p>If the write lock is held by another thread then
         * the current thread becomes disabled for thread scheduling
         * purposes and lies dormant until the read lock has been acquired.
         */
        public void lock() {
            sync.acquireShared(1);
        }

可以看出读锁使用了共享模式,而写锁使用的是独占锁的模式,这也就是读写锁的特点。



2.示例讲解

        假设有一个读操作频繁的Map,可以通过读写锁包装的Map来提升并发性能。具体代码如下:

package factorialtail;

import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;



public class ReadWriteMap<K, V> {
	private final Map<K, V> map;
	private final ReadWriteLock lock=new ReentrantReadWriteLock();
	private final Lock read=lock.readLock();
	private final Lock write=lock.writeLock();
	
	public ReadWriteMap(Map<K, V> map) {
		// TODO Auto-generated constructor stub
		this.map=map;
	}
	
	public V put(K key,V value)
	{
		write.lock();//写锁
		try {
			return map.put(key, value);
		}
		finally {
			write.unlock();
		}
	}
	public V get(Object key)
	{
		read.lock();//读锁
		try {
			return map.get(key);
		}
		finally {
			read.unlock();
		}
	}

}

测试案例:

package factorialtail;

import java.util.HashMap;
import java.util.Map;



public class ReadWriteLockTest {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		final Map<String, Integer> map=new HashMap<>();
		final ReadWriteMap<String, Integer> rwMap=new ReadWriteMap<>(map);
		rwMap.put("a", 1);
		new Thread(new Runnable() {
			
			@Override
			public void run() {
				// TODO Auto-generated method stub
			
				 rwMap.put("b", 2);
				
				
				
			}
		}).start();
		for(int i=0;i<20;i++)
		{
			new Thread(new Runnable() {
				
				
				@Override
				public void run() {
					// TODO Auto-generated method stub
					System.out.println("i="+((int)rwMap.get("a")+1));
					
				}
			}).start();
		}

	}

}
以上便是读写锁一个简单例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值