hdu 5918 Sequence I kmp

本文探讨了一个特定的序列匹配问题,即在给定间隔p的情况下,如何有效地寻找子序列在母序列中出现的所有位置。通过KMP算法的巧妙应用,并适当调整搜索步长,实现了高效的子序列查找。

Sequence I

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 470    Accepted Submission(s): 184


Problem Description
Mr. Frog has two sequences  a1,a2,,an  and  b1,b2,,bm  and a number p. He wants to know the number of positions q such that sequence  b1,b2,,bm  is exactly the sequence  aq,aq+p,aq+2p,,aq+(m1)p  where  q+(m1)pn  and  q1 .
 

Input
The first line contains only one integer  T100 , which indicates the number of test cases.

Each test case contains three lines.

The first line contains three space-separated integers  1n106,1m106  and  1p106 .

The second line contains n integers  a1,a2,,an(1ai109) .

the third line contains m integers  b1,b2,,bm(1bi109) .
 

Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.
 

Sample Input
  
2 6 3 1 1 2 3 1 2 3 1 2 3 6 3 2 1 3 2 2 3 1 1 2 3
 

Sample Output
  
Case #1: 2 Case #2: 1
 

Source

2016中国大学生程序设计竞赛(长春)-重现赛



母串和子串,求子串在母串中出现的次数,但是遍历母串的时候会有间隔p,题目说的很明白,即 a1,a2,,an  and  b1,b2,,bm  and a number p. He wants to know the number of positions q such that sequence  b1,b2,,bm  is exactly the sequence  aq,aq+p,aq+2p,,aq+(m1)p  。

q+(m1)pn  and  q1




.


思路:修改母串匹配子串的时候,每次跳p位,但是要注意起点要选0->p-1这期间所有点,不然会有点不会走到,vis数组去一下重即可。


#include<cstdio>
#include<cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int T[maxn],P[maxn];
  int Next[maxn];
  int vis[maxn];
  int n,m,p;
void makeNext(int  P[],int m,int Next[])
{
    int q,k;
    Next[0] = 0;
    for (q = 1,k = 0; q < m; ++q)
    {
        while(k > 0 && P[q] != P[k])
            k = Next[k-1];
        if (P[q] == P[k])
        {
            k++;
        }
        Next[q] = k;
    }
}

int kmp(int T[],int P[],int n,int m,int Next[],int p)
{
    int i,q;
    int cnt=0;
    makeNext(P,m,Next);
        for(int s=0;s<p;s++)
    for (i = s,q = 0; i < n; i+=p)
    {
        while(q > 0 && P[q] != T[i])
            q = Next[q-1];
        if (P[q] == T[i])
        {
            q++;
        }
        if (q == m)
        {
            if(vis[i]==0)
            {cnt++;
            vis[i]=1;}
        }
    }
    return cnt;
}

int main()
{
    int t;
    scanf("%d",&t);
    int cns=0;
    while(t--)
    {
        memset(T,-1,sizeof(T));
        memset(P,-2,sizeof(P));
        memset(vis,0,sizeof(vis));
        memset(Next,0,sizeof(Next));
        scanf("%d%d%d",&n,&m,&p);
        for(int i=0;i<n;i++)
            scanf("%d",&T[i]);
        for(int i=0;i<m;i++)
            scanf("%d",&P[i]);
        //cout<<kmp(T,P,n,m,Next,p)<<endl;
        printf("Case #%d: %d\n",++cns,kmp(T,P,n,m,Next,p));
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值