Sequence I
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 470 Accepted Submission(s): 184
Problem Description
Mr. Frog has two sequences
a1,a2,⋯,an
and
b1,b2,⋯,bm
and a number p. He wants to know the number of positions q such that sequence
b1,b2,⋯,bm
is exactly the sequence
aq,aq+p,aq+2p,⋯,aq+(m−1)p
where
q+(m−1)p≤n
and
q≥1
.
Input
The first line contains only one integer
T≤100
, which indicates the number of test cases.
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106 .
The second line contains n integers a1,a2,⋯,an(1≤ai≤109) .
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109) .
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106 .
The second line contains n integers a1,a2,⋯,an(1≤ai≤109) .
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109) .
Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.
Sample Input
2 6 3 1 1 2 3 1 2 3 1 2 3 6 3 2 1 3 2 2 3 1 1 2 3
Sample Output
Case #1: 2 Case #2: 1
Source
母串和子串,求子串在母串中出现的次数,但是遍历母串的时候会有间隔p,题目说的很明白,即 a1,a2,⋯,an and b1,b2,⋯,bm and a number p. He wants to know the number of positions q such that sequence b1,b2,⋯,bm is exactly the sequence aq,aq+p,aq+2p,⋯,aq+(m−1)p 。
q+(m−1)p≤n
and
q≥1
.
思路:修改母串匹配子串的时候,每次跳p位,但是要注意起点要选0->p-1这期间所有点,不然会有点不会走到,vis数组去一下重即可。
#include<cstdio>
#include<cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int T[maxn],P[maxn];
int Next[maxn];
int vis[maxn];
int n,m,p;
void makeNext(int P[],int m,int Next[])
{
int q,k;
Next[0] = 0;
for (q = 1,k = 0; q < m; ++q)
{
while(k > 0 && P[q] != P[k])
k = Next[k-1];
if (P[q] == P[k])
{
k++;
}
Next[q] = k;
}
}
int kmp(int T[],int P[],int n,int m,int Next[],int p)
{
int i,q;
int cnt=0;
makeNext(P,m,Next);
for(int s=0;s<p;s++)
for (i = s,q = 0; i < n; i+=p)
{
while(q > 0 && P[q] != T[i])
q = Next[q-1];
if (P[q] == T[i])
{
q++;
}
if (q == m)
{
if(vis[i]==0)
{cnt++;
vis[i]=1;}
}
}
return cnt;
}
int main()
{
int t;
scanf("%d",&t);
int cns=0;
while(t--)
{
memset(T,-1,sizeof(T));
memset(P,-2,sizeof(P));
memset(vis,0,sizeof(vis));
memset(Next,0,sizeof(Next));
scanf("%d%d%d",&n,&m,&p);
for(int i=0;i<n;i++)
scanf("%d",&T[i]);
for(int i=0;i<m;i++)
scanf("%d",&P[i]);
//cout<<kmp(T,P,n,m,Next,p)<<endl;
printf("Case #%d: %d\n",++cns,kmp(T,P,n,m,Next,p));
}
}