hdu 5883 The Best Path 欧拉路径(回路)

本文探讨了一个有趣的问题:如何在由湖泊和河流组成的网络中找到一条路径,使得通过这条路径旅行的幸运数字最大。文章提供了一段代码,展示了如何解决这个问题,并讨论了输入输出格式及特殊情况的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Best Path

Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 732 Accepted Submission(s): 316

Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,…,an) for each lake. If the path she finds is P0→P1→…→Pt, the lucky number of this trip would be aP0XORaP1XOR…XORaPt. She want to make this number as large as possible. Can you help her?

Input
The first line of input contains an integer t, the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000), as described above. The i-th line of the next N lines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i-th lake.

The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.

Output
For each test cases, output the largest lucky number. If it dose not have any path, output “Impossible”.

Sample Input
2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4

Sample Output
2
Impossible

Source
2016 ACM/ICPC Asia Regional Qingdao Online

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <time.h>
using namespace std;
typedef long long ll;
const int maxint = -1u>>1;
const int maxn=100010;
int t,n,m;
int a[maxn];
int pre[maxn];
int getfa(int x)
{
    if(x!=pre[x])
        pre[x]=getfa(pre[x]);
    return pre[x];
}
void Union(int x,int y)
{
    int X=getfa(x);
    int Y=getfa(y);
    if(X!=Y)
        pre[X]=Y;
}
int de[maxn];
int main()
{
   scanf("%d",&t);
   while(t--)
   {
       scanf("%d%d",&n,&m);
       for(int i=1;i<=n;i++)
       {
           scanf("%d",&a[i]);
       }
       for(int i=1;i<=n;i++)
       {
           pre[i]=i;
       }
       memset(de,0,sizeof(de));
        for(int i=0;i<m;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            de[x]++,de[y]++;
            Union(x,y);
        }
        int p=getfa(1);
        bool flag=true;
        for(int i=1;i<=n;i++)
        {
            if(getfa(i)!=p)
            {
                flag=false;
                break;
            }
        }
        if(!flag)
        {
            cout<<"Impossible"<<endl;
            continue;
        }
        int jcnt=0;
        int s[2];
        s[0]=s[1]=0;
        int id=0;
        for(int i=1;i<=n;i++)
        {
            if(de[i]&1)
            {
                if(id<2)
            s[id++]=i;
            jcnt++;
            }
        }
        //cout<<"du"<<jcnt<<endl;   
        int ans=0;
        if(!(jcnt==0||jcnt==2))
        {
            cout<<"Impossible"<<endl;
            continue;
        }
        if(jcnt==0)
        {
            for(int i=1;i<=n;i++)
            {
                if(de[i]>>1&1)
                {
                    ans^=a[i];
                }
            }
            for(int i=1;i<=n;i++)
            {
                ans=max(ans,ans^a[i]);
            }
            cout<<ans<<endl;
        }
        else if(jcnt=2)
        {
            for(int i=1;i<=n;i++)
            {
                if((de[i]>>1&1)||i==s[0]||i==s[1])
                {
                    ans^=a[i];
                }
            }
            cout<<ans<<endl;
        }
   }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值