ejb jboss 和 client 的两种交互方式

本文介绍如何使用Java Naming and Directory Interface (JNDI)进行远程EJB服务的查找与调用,包括配置属性、创建InitialContext实例及通过lookup方法获取远程服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.


Properties props = new Properties();

            props.setProperty("java.naming.factory.initial",
                    "org.jnp.interfaces.NamingContextFactory");
            props.setProperty("java.naming.provider.url", "localhost:1099");
            props.setProperty("java.naming.factory.url.pkgs",
                    "org.jboss.naming:org.jnp.interfaces");
            InitialContext ctx;
            ctx = new InitialContext(props);
            TbVitalsignsservice service = (TbVitalsignsservice) ctx
                    .lookup("DGOFGH-RFID-ear/TbVitalsignsserviceBean/remote");



2.新建“ jndi.properties”文件   内容

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost\:1099



新建类‘

public class Util {

    private static Properties properties;

    private static InitialContext context;

    static {
        properties = new Properties();
        try {
            properties.load(Util.class.getResourceAsStream("jndi.properties"));
            context = new InitialContext(properties);
        } catch (IOException e) {
            e.printStackTrace();
        } catch (NamingException e) {
            e.printStackTrace();
        }
    }

    public static InitialContext getInitialContext() {
        return context;
    }

    /*
     * 曹飞龙TbVitalsignsservice
     */
    public static VsInfo getvsinfoService() throws NamingException {
        return (VsInfo) context.lookup("DGOFGH-RFID-ear/VsInfoBean/remote");
    }

    /*
     * 曹飞龙TbVitalsignsservice
     */
    public static TbVitalsignsservice getTbVitalsignsservicePadService()
            throws NamingException {
        return (TbVitalsignsservice) context
                .lookup("DGOFGH-RFID-ear/TbVitalsignsserviceBean/remote");
    }
}


servlet调用

try {

            VsInfo vsinforef = com.sura.mnursing.config.Util.getvsinfoService();
            vsinforef.savevs(null);
        } catch (NamingException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }


内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型基于规则的策略;然后研究动态规划(DP)算法等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法等效燃油消耗最小策略的应用;③学习工况识别算法的设计实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理应用场景,适合用于学术研究工业实践。在学习过程中,建议结合代码调试实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
内容概要:论文《基于KANN-DBSCAN带宽优化的核密度估计载荷谱外推》针对传统核密度估计(KDE)载荷外推中使用全局固定带宽的局限性,提出了一种基于改进的K平均最近邻DBSCAN(KANN-DBSCAN)聚类算法优化带宽选择的核密度估计方法。该方法通过对载荷数据进行KANN-DBSCAN聚类分组,采用拇指法(ROT)计算各簇最优带宽,再进行核密度估计蒙特卡洛模拟外推。实验以电动汽车实测载荷数据为对象,通过统计参数、拟合度伪损伤三个指标验证了该方法的有效性,误差显著降低,拟合度R²>0.99,伪损伤接近1。 适合人群:具备一定编程基础载荷数据分析经验的研究人员、工程师,尤其是从事汽车工程、机械工程等领域的工作1-5年研发人员。 使用场景及目标:①用于电动汽车载荷谱编制,提高载荷预测的准确性;②应用于机械零部件的载荷外推,特别是非对称载荷分布多峰扭矩载荷;③实现智能网联汽车载荷预测与数字孪生集成,提供动态更新的载荷预测系统。 其他说明:该方法不仅解决了传统KDE方法在复杂工况下的“过平滑”与“欠拟合”问题,还通过自适应参数机制提高了方法的普适性计算效率。实际应用中,建议结合MATLAB代码实现,确保数据质量,优化参数并通过伪损伤误差等指标进行验证。此外,该方法可扩展至风电装备、航空结构健康监测等多个领域,未来研究方向包括高维载荷扩展、实时外推多物理场耦合等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值