重建二叉树

OJ链接:重建二叉树

题目描述

  • 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

解题思路

  1. 根据root节点,将中序vector划分成vin_left,vin_right两部分中序子序列。
  2. 根据中序子序列长度,将前序vector划分成pre_left, pre_right对应的前序子序列。
  3. root->left递归生成。
  4. root->right递归生成。

代码

 

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* reConstructBinaryTreeCore(vector<int> pre, int preStart, int preEnd,
    vector<int> vin, int vinStart, int vinEnd)
    {
        if(preStart>preEnd || vinStart>vinEnd)
            return nullptr;
        
        TreeNode* root =new TreeNode(pre[preStart]);
        for(auto i=vinStart;i<=vinEnd;i++)
        {
            if(vin[i]==pre[preStart])
            {
                root->left=reConstructBinaryTreeCore(pre,preStart+1,i-vinStart+preStart,vin,vinStart,i-1);
                root->right=reConstructBinaryTreeCore(pre,i-vinStart+preStart+1,preEnd,vin,i+1,vinEnd);
                break;
            }
        }
        return root;
    }
    
    TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
        if(pre.empty() || vin.empty() )
            return nullptr;
        
        return reConstructBinaryTreeCore(pre,0,pre.size()-1, vin, 0, vin.size()-1);

    }
};

 

Delphi 12.3 作为一款面向 Windows 平台的集成开发环境,由 Embarcadero Technologies 负责其持续演进。该环境以 Object Pascal 语言为核心,并依托 Visual Component Library(VCL)框架,广泛应用于各类桌面软件、数据库系统及企业级解决方案的开发。在此生态中,Excel4Delphi 作为一个重要的社区开源项目,致力于搭建 Delphi 与 Microsoft Excel 之间的高效桥梁,使开发者能够在自研程序中直接调用 Excel 的文档处理、工作表管理、单元格操作及宏执行等功能。 该项目以库文件与组件包的形式提供,开发者将其集成至 Delphi 工程后,即可通过封装良好的接口实现对 Excel 的编程控制。具体功能涵盖创建与编辑工作簿、格式化单元格、批量导入导出数据,乃至执行内置公式与宏指令等高级操作。这一机制显著降低了在财务分析、报表自动生成、数据整理等场景中实现 Excel 功能集成的技术门槛,使开发者无需深入掌握 COM 编程或 Excel 底层 API 即可完成复杂任务。 使用 Excel4Delphi 需具备基础的 Delphi 编程知识,并对 Excel 对象模型有一定理解。实践中需注意不同 Excel 版本间的兼容性,并严格遵循项目文档进行环境配置与依赖部署。此外,操作过程中应遵循文件访问的最佳实践,例如确保目标文件未被独占锁定,并实施完整的异常处理机制,以防数据损毁或程序意外中断。 该项目的持续维护依赖于 Delphi 开发者社区的集体贡献,通过定期更新以适配新版开发环境与 Office 套件,并修复已发现的问题。对于需要深度融合 Excel 功能的 Delphi 应用而言,Excel4Delphi 提供了经过充分测试的可靠代码基础,使开发团队能更专注于业务逻辑与用户体验的优化,从而提升整体开发效率与软件质量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>嗯,用户想用C++实现重建二叉树的方法,特别是根据前序和中序遍历来构建。我需要参考提供的引用内容,特别是引用[2]和[4]中的代码示例。首先,我应该确认递归方法的步骤:前序的第一个元素是根节点,然后在中序中找到根的位置,分割左右子树,再递归处理左右子树。用户可能需要详细的步骤解释和代码示例,同时注意边界条件,比如空数组的情况。还要考虑代码的效率,比如使用哈希表来快速查找中序中的根节点位置,如引用[1]提到的indexMap。不过引用[2]中的代码用的是循环查找,可能需要优化。另外,引用[4]提到了递归的模板,可以按照这个结构来组织代码。最后,需要生成相关问题,比如优化方法或应用场景。确保代码正确,语法正确,并符合用户的要求。</think>### C++实现重建二叉树的方法 根据前序遍历和中序遍历重建二叉树的步骤如下: 1. **递归终止条件** 当前序遍历或中序遍历序列为空时返回空指针。 2. **确定根节点** 前序遍历序列的第一个元素为当前子树的根节点值,例如:$pre[0] = rootVal$[^3]。 3. **划分左右子树** 在中序遍历序列中找到根节点的位置$i$,则: - 左子树的中序遍历范围:$vin[0]$至$vin[i-1]$ - 右子树的中序遍历范围:$vin[i+1]$至$vin[end]$ 前序遍历序列根据中序划分结果计算左右子树范围[^4]。 4. **递归构建子树** 对左右子树的序列递归调用构建函数。 #### 代码实现(优化版) ```cpp #include <vector> #include <unordered_map> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; class Solution { public: unordered_map<int, int> indexMap; // 中序遍历值到索引的哈希表 TreeNode* buildTree(vector<int>& pre, int preStart, int preEnd, vector<int>& vin, int vinStart, int vinEnd) { if (preStart > preEnd || vinStart > vinEnd) return nullptr; int rootVal = pre[preStart]; TreeNode* root = new TreeNode(rootVal); int i = indexMap[rootVal]; // 直接通过哈希表查找位置 int leftSize = i - vinStart; root->left = buildTree(pre, preStart + 1, preStart + leftSize, vin, vinStart, i - 1); root->right = buildTree(pre, preStart + leftSize + 1, preEnd, vin, i + 1, vinEnd); return root; } TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin) { if (pre.empty() || vin.empty()) return nullptr; for (int i = 0; i < vin.size(); i++) indexMap[vin[i]] = i; // 预存中序遍历索引 return buildTree(pre, 0, pre.size()-1, vin, 0, vin.size()-1); } }; ``` #### 关键改进说明 1. **哈希表优化**:通过预存中序遍历索引,将查找根节点位置的时间复杂度从$O(n)$降为$O(1)$[^1]。 2. **避免向量拷贝**:原代码通过向量切片传递参数(如`leftpre`),现改为传递索引范围,减少内存占用。 3. **边界条件处理**:明确递归终止条件,避免栈溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值