重建二叉树

OJ链接:重建二叉树

题目描述

  • 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

解题思路

  1. 根据root节点,将中序vector划分成vin_left,vin_right两部分中序子序列。
  2. 根据中序子序列长度,将前序vector划分成pre_left, pre_right对应的前序子序列。
  3. root->left递归生成。
  4. root->right递归生成。

代码

 

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* reConstructBinaryTreeCore(vector<int> pre, int preStart, int preEnd,
    vector<int> vin, int vinStart, int vinEnd)
    {
        if(preStart>preEnd || vinStart>vinEnd)
            return nullptr;
        
        TreeNode* root =new TreeNode(pre[preStart]);
        for(auto i=vinStart;i<=vinEnd;i++)
        {
            if(vin[i]==pre[preStart])
            {
                root->left=reConstructBinaryTreeCore(pre,preStart+1,i-vinStart+preStart,vin,vinStart,i-1);
                root->right=reConstructBinaryTreeCore(pre,i-vinStart+preStart+1,preEnd,vin,i+1,vinEnd);
                break;
            }
        }
        return root;
    }
    
    TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
        if(pre.empty() || vin.empty() )
            return nullptr;
        
        return reConstructBinaryTreeCore(pre,0,pre.size()-1, vin, 0, vin.size()-1);

    }
};

 

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>嗯,用户想用C++实现重建二叉树的方法,特别是根据前序和中序遍历来构建。我需要参考提供的引用内容,特别是引用[2]和[4]中的代码示例。首先,我应该确认递归方法的步骤:前序的第一个元素是根节点,然后在中序中找到根的位置,分割左右子树,再递归处理左右子树。用户可能需要详细的步骤解释和代码示例,同时注意边界条件,比如空数组的情况。还要考虑代码的效率,比如使用哈希表来快速查找中序中的根节点位置,如引用[1]提到的indexMap。不过引用[2]中的代码用的是循环查找,可能需要优化。另外,引用[4]提到了递归的模板,可以按照这个结构来组织代码。最后,需要生成相关问题,比如优化方法或应用场景。确保代码正确,语法正确,并符合用户的要求。</think>### C++实现重建二叉树的方法 根据前序遍历和中序遍历重建二叉树的步骤如下: 1. **递归终止条件** 当前序遍历或中序遍历序列为空时返回空指针。 2. **确定根节点** 前序遍历序列的第一个元素为当前子树的根节点值,例如:$pre[0] = rootVal$[^3]。 3. **划分左右子树** 在中序遍历序列中找到根节点的位置$i$,则: - 左子树的中序遍历范围:$vin[0]$至$vin[i-1]$ - 右子树的中序遍历范围:$vin[i+1]$至$vin[end]$ 前序遍历序列根据中序划分结果计算左右子树范围[^4]。 4. **递归构建子树** 对左右子树的序列递归调用构建函数。 #### 代码实现(优化版) ```cpp #include <vector> #include <unordered_map> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; class Solution { public: unordered_map<int, int> indexMap; // 中序遍历值到索引的哈希表 TreeNode* buildTree(vector<int>& pre, int preStart, int preEnd, vector<int>& vin, int vinStart, int vinEnd) { if (preStart > preEnd || vinStart > vinEnd) return nullptr; int rootVal = pre[preStart]; TreeNode* root = new TreeNode(rootVal); int i = indexMap[rootVal]; // 直接通过哈希表查找位置 int leftSize = i - vinStart; root->left = buildTree(pre, preStart + 1, preStart + leftSize, vin, vinStart, i - 1); root->right = buildTree(pre, preStart + leftSize + 1, preEnd, vin, i + 1, vinEnd); return root; } TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin) { if (pre.empty() || vin.empty()) return nullptr; for (int i = 0; i < vin.size(); i++) indexMap[vin[i]] = i; // 预存中序遍历索引 return buildTree(pre, 0, pre.size()-1, vin, 0, vin.size()-1); } }; ``` #### 关键改进说明 1. **哈希表优化**:通过预存中序遍历索引,将查找根节点位置的时间复杂度从$O(n)$降为$O(1)$[^1]。 2. **避免向量拷贝**:原代码通过向量切片传递参数(如`leftpre`),现改为传递索引范围,减少内存占用。 3. **边界条件处理**:明确递归终止条件,避免栈溢出。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值