Kotlin Basics: Standard Extension Functions kotlin

本文主要介绍Kotlin扩展函数,它能为现有类添加新功能,无需继承或反射。文中详细讲解了Kotlin标准扩展函数,如run、apply、let、also、takeIf和takeUnless等,还说明了这些函数可避免临时变量,提高代码可读性,可按需选择使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://lmller.github.io/kotlin-standard-extensions

Kotlin’s most powerful feature (compared to Java) are probably Extension Functions.
They allow you to add new functionality to an existing class, without using inheritance or reflection. You can define your own extension functions and Kotlin ships with a lot of pre-defined ones.
There are e.g. a lot extensions for collections, but also those that extend every class in your program. That’s right - every single class is extended by the functions in Standard.kt
When I started with Kotlin, I found them quite confusing. With this post, I hope to un-confuse them a little bit.

Before we get to the details, some basics.

An Extension Function is a function that adds new functionality to an existing class. It’s functionally equivalent to a static utility function in Java, but we can call it from the object itself.

In Java, you might have something like this:

class Util {
  public static final boolean isNumeric(String receiver) {
     return reveiver.matches("\\d+");
  }
}
...

String myString = ...;

if(Util.isNumeric(myString)) ...

By using an extension function, Kotlin allows us to call the isNumeric method directly on the receiving object:

fun String.isNumeric(): Boolean {
  return this.matches("\\d+".toRegex())
}
...

val myString = ...

if(myString.isNumeric()) ...

Pretty cool, right? You might agree that using extension functions increases the code’s readability.

The example shows how an extension function is defined. We use the fun keyword, followed by the type we want to extend (in this case String). Then a . and the name of the function. That’s it!
The extension function will always receive an implicit parameter this, which is the object we called the extension function on (in this case, myString).

Let’s take a look at Kotlin’s standard extension functions.

run

public inline fun <T, R> T.run(block: T.() -> R): R = block()

This looks a bit messy in the beginning. But it’s actually quite simple. run is a generic extension function on any type T, that executes another extension function on this type (extension functions as parameters are symbolized as T.()) and returns the result of that function.

Consider this example:

val generator = PasswordGenerator()
generator.seed = "someString"
generator.hash = {s -> someHash(s)}
generator.hashRepititions = 1000

val password: Password = generator.generate()

Someone didn’t quite think through the design of this password generator class. Its constructor does nothing, but it needs a lot of initialization. To use this class, I need to introduce a variable generator, set all necessary parameters and use generate to generate the actual password. This is cool if I want to generate multiple passwords with the same generator, but if I throwaway the generator variable anyway, I can save some typing by using run:

val password: Password = PasswordGenerator().run {
       seed = "someString"
       hash = {s -> someHash(s)}
       hashRepetitions = 1000

       generate()
   }

Lambdas in Kotlin implicitly return the result of the last line. That’s why I can omit the temporary variable and store the password directly. Because an extension function is passed to run I can also access the password generator’s properties like seed or hash directly.
This way “the things that belong together” stay together. It’s one line more, I give you that. But it’s still less code with less redundancy I had to write.

apply

public inline fun <T> T.apply(block: T.() -> Unit): T { block(); return this }

This function looks almost like run, but there is a slight difference. apply will always return this, which is the receiver of the extension function.
That means that we can use apply for builder-style initialization, even if the designer of the class didn’t implement it with a builder in mind.
If we stick to the password generator example:

val generator = PasswordGenerator().apply {
       seed = "someString"
       hash = {s -> someHash(s)}
       hashRepetitions = 1000
   }

val password = generator.generate()

This is particularly useful if you need an object with the same settings more than once.
It can also be used to avoid init{} blocks during the initialization of a class.
Instead of:

class Message(message: String, signature: String) {
  val body = MessageBody()
  
  init {
    body.text = message + "\n" + signature
  }
}

You can write:

class Message(message: String, signature: String) {
  val body = MessageBody().apply {
    text = message + "\n" + signature
  }
}

let

public inline fun <T, R> T.let(block: (T) -> R): R = block(this)

let is particularly useful to use it instead of a null check:

val fruitBasket = ...

val result = apple?.let {
  fruitBasket.add(it)
}

The apple (it) will only be added to the basket if it’s not null
Notice that let will return the result of the last line in the lambda (which is the result of add).
Just like runlet also helps to keep the scope of your variables small. Instead of this you have to use it or a custom variable name to reference it:

val fruitBasket = ...

appleTree.pick()?.let {
  fruitBasket.add(it)
}

also

public inline fun <T> T.also(block: (T) -> Unit): T { block(this); return this }

Kotlin 1.1 introduced this new extension function called also. It fills the gap between let and apply.
Just like apply, it will always return its receiver. But instead of an extension function it takes a normal function as an argument.

class FruitBasket {
    private var weight = 0

    fun addFrom(appleTree: AppleTree) {
        val apple = appleTree.pick().also { apple ->
            this.weight += apple.weight
            add(apple)
        }
        ...
    }
    ...
    fun add(fruit: Fruit) = ...
}

I renamed the implicit it to an explicit apple this time. Assuming the function appleTree.pick() returns an apple, the weight of the whole basket increases.
Notice that both the apple and the basket have a weight property. If I had used apply, it would not be possible* to access the basket’s weight. Since apply takes an extension function, thiswould refer to the apple and not the basket. With also this is possible.

takeIf and takeUnless

public inline fun <T> T.takeIf(predicate: (T) -> Boolean): T? = if (predicate(this)) this else null

public inline fun <T> T.takeUnless(predicate: (T) -> Boolean): T? = if (!predicate(this)) this else null

The last two functions I want to mention have also been added to Kotlin with 1.1.

takeIf does exactly that - it takes the receiver if it satisfies a condition.
takeUnless inverts the condition and takes this only if the condition is not satisfied.

For example:

val redApple = apple.takeIf { it.color == RED }
val otherApple = apple.takeUnless { it.color == RED }

Those two methods are the functional equivalent to the filter function to collections, but they operate on a single variable.

Summary

All extension functions can be used to avoid temporary variables/Re-scope a variable (or the result of a function). Many of the extension functions in Standard.kt can be used interchangeable. Pick the ones that match your style and that offer the best readability in your context. The table below shows a common usage for each of the presented functions.

FunctionArgumentReturnsUsage examples
runthisany resultmake an object a builder for another object
applythisthismake an object its own builder
letitany resultnull checks
alsoitthisYou need apply but don’t want to shadow this
takeIfitit or nullshorthand for if(predicate(it)) it else null
takeUnlessitit or nullshorthand for if(!predicate(it)) it else null

* You still can by using this@FruitBasket, but do you want to do this?

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值