Kotlin Basics: Standard Extension Functions kotlin

本文主要介绍Kotlin扩展函数,它能为现有类添加新功能,无需继承或反射。文中详细讲解了Kotlin标准扩展函数,如run、apply、let、also、takeIf和takeUnless等,还说明了这些函数可避免临时变量,提高代码可读性,可按需选择使用。

https://lmller.github.io/kotlin-standard-extensions

Kotlin’s most powerful feature (compared to Java) are probably Extension Functions.
They allow you to add new functionality to an existing class, without using inheritance or reflection. You can define your own extension functions and Kotlin ships with a lot of pre-defined ones.
There are e.g. a lot extensions for collections, but also those that extend every class in your program. That’s right - every single class is extended by the functions in Standard.kt
When I started with Kotlin, I found them quite confusing. With this post, I hope to un-confuse them a little bit.

Before we get to the details, some basics.

An Extension Function is a function that adds new functionality to an existing class. It’s functionally equivalent to a static utility function in Java, but we can call it from the object itself.

In Java, you might have something like this:

class Util {
  public static final boolean isNumeric(String receiver) {
     return reveiver.matches("\\d+");
  }
}
...

String myString = ...;

if(Util.isNumeric(myString)) ...

By using an extension function, Kotlin allows us to call the isNumeric method directly on the receiving object:

fun String.isNumeric(): Boolean {
  return this.matches("\\d+".toRegex())
}
...

val myString = ...

if(myString.isNumeric()) ...

Pretty cool, right? You might agree that using extension functions increases the code’s readability.

The example shows how an extension function is defined. We use the fun keyword, followed by the type we want to extend (in this case String). Then a . and the name of the function. That’s it!
The extension function will always receive an implicit parameter this, which is the object we called the extension function on (in this case, myString).

Let’s take a look at Kotlin’s standard extension functions.

run

public inline fun <T, R> T.run(block: T.() -> R): R = block()

This looks a bit messy in the beginning. But it’s actually quite simple. run is a generic extension function on any type T, that executes another extension function on this type (extension functions as parameters are symbolized as T.()) and returns the result of that function.

Consider this example:

val generator = PasswordGenerator()
generator.seed = "someString"
generator.hash = {s -> someHash(s)}
generator.hashRepititions = 1000

val password: Password = generator.generate()

Someone didn’t quite think through the design of this password generator class. Its constructor does nothing, but it needs a lot of initialization. To use this class, I need to introduce a variable generator, set all necessary parameters and use generate to generate the actual password. This is cool if I want to generate multiple passwords with the same generator, but if I throwaway the generator variable anyway, I can save some typing by using run:

val password: Password = PasswordGenerator().run {
       seed = "someString"
       hash = {s -> someHash(s)}
       hashRepetitions = 1000

       generate()
   }

Lambdas in Kotlin implicitly return the result of the last line. That’s why I can omit the temporary variable and store the password directly. Because an extension function is passed to run I can also access the password generator’s properties like seed or hash directly.
This way “the things that belong together” stay together. It’s one line more, I give you that. But it’s still less code with less redundancy I had to write.

apply

public inline fun <T> T.apply(block: T.() -> Unit): T { block(); return this }

This function looks almost like run, but there is a slight difference. apply will always return this, which is the receiver of the extension function.
That means that we can use apply for builder-style initialization, even if the designer of the class didn’t implement it with a builder in mind.
If we stick to the password generator example:

val generator = PasswordGenerator().apply {
       seed = "someString"
       hash = {s -> someHash(s)}
       hashRepetitions = 1000
   }

val password = generator.generate()

This is particularly useful if you need an object with the same settings more than once.
It can also be used to avoid init{} blocks during the initialization of a class.
Instead of:

class Message(message: String, signature: String) {
  val body = MessageBody()
  
  init {
    body.text = message + "\n" + signature
  }
}

You can write:

class Message(message: String, signature: String) {
  val body = MessageBody().apply {
    text = message + "\n" + signature
  }
}

let

public inline fun <T, R> T.let(block: (T) -> R): R = block(this)

let is particularly useful to use it instead of a null check:

val fruitBasket = ...

val result = apple?.let {
  fruitBasket.add(it)
}

The apple (it) will only be added to the basket if it’s not null
Notice that let will return the result of the last line in the lambda (which is the result of add).
Just like runlet also helps to keep the scope of your variables small. Instead of this you have to use it or a custom variable name to reference it:

val fruitBasket = ...

appleTree.pick()?.let {
  fruitBasket.add(it)
}

also

public inline fun <T> T.also(block: (T) -> Unit): T { block(this); return this }

Kotlin 1.1 introduced this new extension function called also. It fills the gap between let and apply.
Just like apply, it will always return its receiver. But instead of an extension function it takes a normal function as an argument.

class FruitBasket {
    private var weight = 0

    fun addFrom(appleTree: AppleTree) {
        val apple = appleTree.pick().also { apple ->
            this.weight += apple.weight
            add(apple)
        }
        ...
    }
    ...
    fun add(fruit: Fruit) = ...
}

I renamed the implicit it to an explicit apple this time. Assuming the function appleTree.pick() returns an apple, the weight of the whole basket increases.
Notice that both the apple and the basket have a weight property. If I had used apply, it would not be possible* to access the basket’s weight. Since apply takes an extension function, thiswould refer to the apple and not the basket. With also this is possible.

takeIf and takeUnless

public inline fun <T> T.takeIf(predicate: (T) -> Boolean): T? = if (predicate(this)) this else null

public inline fun <T> T.takeUnless(predicate: (T) -> Boolean): T? = if (!predicate(this)) this else null

The last two functions I want to mention have also been added to Kotlin with 1.1.

takeIf does exactly that - it takes the receiver if it satisfies a condition.
takeUnless inverts the condition and takes this only if the condition is not satisfied.

For example:

val redApple = apple.takeIf { it.color == RED }
val otherApple = apple.takeUnless { it.color == RED }

Those two methods are the functional equivalent to the filter function to collections, but they operate on a single variable.

Summary

All extension functions can be used to avoid temporary variables/Re-scope a variable (or the result of a function). Many of the extension functions in Standard.kt can be used interchangeable. Pick the ones that match your style and that offer the best readability in your context. The table below shows a common usage for each of the presented functions.

FunctionArgumentReturnsUsage examples
runthisany resultmake an object a builder for another object
applythisthismake an object its own builder
letitany resultnull checks
alsoitthisYou need apply but don’t want to shadow this
takeIfitit or nullshorthand for if(predicate(it)) it else null
takeUnlessitit or nullshorthand for if(!predicate(it)) it else null

* You still can by using this@FruitBasket, but do you want to do this?

下载前可以先看下教程 https://pan.quark.cn/s/a426667488ae 标题“仿淘宝jquery图片左右切换带数字”揭示了这是一个关于运用jQuery技术完成的图片轮播机制,其特色在于具备淘宝在线平台普遍存在的图片切换表现,并且在整个切换环节中会展示当前图片的序列号。 此类功能一般应用于电子商务平台的产品呈现环节,使用户可以便捷地查看多张商品的照片。 说明中的“NULL”表示未提供进一步的信息,但我们可以借助标题来揣摩若干核心的技术要点。 在构建此类功能时,开发者通常会借助以下技术手段:1. **jQuery库**:jQuery是一个应用广泛的JavaScript框架,它简化了HTML文档的遍历、事件管理、动画效果以及Ajax通信。 在此项目中,jQuery将负责处理用户的点击动作(实现左右切换),并且制造流畅的过渡效果。 2. **图片轮播扩展工具**:开发者或许会采用现成的jQuery扩展,例如Slick、Bootstrap Carousel或个性化的轮播函数,以达成图片切换的功能。 这些扩展能够辅助迅速构建功能完善的轮播模块。 3. **即时数字呈现**:展示当前图片的序列号,这需要通过JavaScript或jQuery来追踪并调整。 每当图片切换时,相应的数字也会同步更新。 4. **CSS美化**:为了达成淘宝图片切换的视觉效果,可能需要设计特定的CSS样式,涵盖图片的排列方式、过渡效果、点状指示器等。 CSS3的动画和过渡特性(如`transition`和`animation`)在此过程中扮演关键角色。 5. **事件监测**:运用jQuery的`.on()`方法来监测用户的操作,比如点击左右控制按钮或自动按时间间隔切换。 根据用户的交互,触发相应的函数来执行...
垃圾实例分割数据集 一、基础信息 • 数据集名称:垃圾实例分割数据集 • 图片数量: 训练集:7,000张图片 验证集:426张图片 测试集:644张图片 • 训练集:7,000张图片 • 验证集:426张图片 • 测试集:644张图片 • 分类类别: 垃圾(Sampah) • 垃圾(Sampah) • 标注格式:YOLO格式,包含实例分割的多边形点坐标,适用于实例分割任务。 • 数据格式:图片文件 二、适用场景 • 智能垃圾检测系统开发:数据集支持实例分割任务,帮助构建能够自动识别和分割图像中垃圾区域的AI模型,适用于智能清洁机器人、自动垃圾桶等应用。 • 环境监控与管理:集成到监控系统中,用于实时检测公共区域的垃圾堆积,辅助环境清洁和治理决策。 • 计算机视觉研究:支持实例分割算法的研究和优化,特别是在垃圾识别领域,促进AI在环保方面的创新。 • 教育与实践:可用于高校或培训机构的AI课程,作为实例分割技术的实践数据集,帮助学生理解计算机视觉应用。 三、数据集优势 • 精确的实例分割标注:每个垃圾实例都使用详细的多边形点进行标注,确保分割边界准确,提升模型训练效果。 • 数据多样性:包含多种垃圾物品实例,覆盖不同场景,增强模型的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于与主流深度学习框架集成,如YOLO系列、PyTorch等,方便研究人员和开发者使用。 • 实际应用价值:直接针对现实世界的垃圾管理需求,为自动化环保解决方案提供可靠数据支持,具有重要的社会意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值