算法之计数排序(Counting Sort)

本文深入讲解计数排序算法,一种适用于整数排序的线性时间复杂度方法。介绍其核心原理,包括查找数据范围、统计元素频率、累计计数及反向填充过程。通过实例演示和代码实现,帮助读者理解并掌握计数排序的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 

作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。

然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

 

1 算法描述

  • 找出待排序的数组中最大和最小的元素;

  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;

  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);

  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

 

2 动图演示

 

3 代码实现

/**
    * 计数排序
    *
    * @param array
    * @return
    */
   public static int[] CountingSort(int[] array) {
       if (array.length == 0) return array;
       int bias, min = array[0], max = array[0];
       for (int i = 1; i < array.length; i++) {
           if (array[i] > max)
               max = array[i];
           if (array[i] < min)
               min = array[i];
       }
       bias = 0 - min;
       int[] bucket = new int[max - min + 1];
       Arrays.fill(bucket, 0);
       for (int i = 0; i < array.length; i++) {
           bucket[array[i] + bias]++;
       }
       int index = 0, i = 0;
       while (index < array.length) {
           if (bucket[i] != 0) {
               array[index] = i - bias;
               bucket[i]--;
               index++;
           } else
               i++;
       }
       return array;
   }

 

4 算法分析

当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。

计数排序不是比较排序,排序的速度快于任何比较排序算法。

由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。

最佳情况:T(n) = O(n+k)  

最差情况:T(n) = O(n+k)  

平均情况:T(n) = O(n+k)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值