Thinking In Java 之 多线程 4

本文通过哲学家就餐问题深入浅出地介绍了死锁的概念及产生的四个必要条件,并提供了避免死锁的代码示例。此外,还探讨了CountDownLatch与CyclicBarrier这两种并发工具类的应用场景与实现方式。

Deadlock

Deadlock can occur if four conditions are simultaneously met:
1. Mutual exclusion. At least one resource used by the tasks must not be shareable.
2. At least one task must be holding a resource and waiting to acquire a resource currently held by another task.
3. A resource cannot be preemptively taken away from a task. Tasks only release resources as a normal event.
4. A circular wait can happen, whereby a task waits on a resource held by another task, which in turn is waiting on a resource held by another task, and so on, until one of the tasks is waiting on a resource held by the first task, thus grid-locking everything.

public class Chopstick {
    private boolean taken = false;
    public synchronized void take() throws InterruptedException {
        while(taken) {
            wait();
        }
        taken = true;
    }

    public synchronized void drop() {
        taken = false;
        notifyAll();
    }
}
public class Philosopher implements Runnable{
    private Chopstick left;
    private Chopstick right;
    private final int id;

    private void pause() throws InterruptedException {
        TimeUnit.MILLISECONDS.sleep(500);
    }

    public Philosopher(Chopstick left, Chopstick right, int ident) {
        this.left = left;
        this.right = right;
        id = ident;
    }

    @Override
    public void run() {
        try {
            while(!Thread.interrupted()) {
                System.out.println(this + " " + "thinking");
                pause();
                System.out.println(this + " " + "grabbing right");
                right.take();
                System.out.println(this + " " + "grabbing left");
                left.take();
                System.out.println(this + " " + "eating");
                pause();
                right.drop();
                left.drop();
            }
        } catch (InterruptedException e) {
            System.out.println(this + " " + "exiting via interrupt");
        }
    }

    public String toString() {
        return "Philosopher" + id;
    }

}

死锁:

public class DeadLockingDiningPhilosophers {
    public static void main(String[] args) throws IOException {
        int size = 5;
        ExecutorService exec = Executors.newCachedThreadPool();
        Chopstick[] sticks = new Chopstick[size];
        for(int i=0;i<size;i++) {
            sticks[i] = new Chopstick();
        }
        for(int i=0;i<size;i++) {
            exec.execute(new Philosopher(sticks[i], sticks[(i+1) % size], i));
        }
        System.out.println("Press 'Enter' to quit");
        System.in.read();
        exec.shutdownNow();
    }
}

这里写图片描述

解除死锁:

public class FixedDiningPhilosophers {
    public static void main(String[] args) throws IOException {
        int size = 5;
        ExecutorService exec = Executors.newCachedThreadPool();
        Chopstick[] sticks = new Chopstick[size];
        for(int i=0;i<size;i++) {
            sticks[i] = new Chopstick();
        }
        for(int i=0;i<size;i++) {
            if(i<(size-1)) {
                exec.execute(new Philosopher(sticks[i], sticks[i+1], i));
            }else {
                exec.execute(new Philosopher(sticks[0], sticks[i],i));
            }
        }
        System.out.println("Press 'Enter' to quit");
        System.in.read();
        exec.shutdownNow();
    }
}

这里写图片描述

CountDownLatch

You give an initial count to a CountDownLatch object, and you task that calls await() on that object will block until the count reaches zero. Other tasks may call countDown() on the object to reduce the count, presumably when a task finished its job. A CountDownLatch is designed to be used in a one-shot fashion; the count cannot be reset. If you need a version that resets the count, you can use a CyclicBarrier instead.

class TaskPortion implements Runnable {

    private static int counter = 0;
    private final int id = counter++;
    private static Random rand = new Random(47);
    private final CountDownLatch latch;

    public TaskPortion(CountDownLatch latch) {
        this.latch = latch;
    }

    @Override
    public void run() {
        try {
            doWork();
            latch.countDown();
        } catch (InterruptedException e) {
            // Acceptable way to exit
        }
    }

    private void doWork() throws InterruptedException {
        TimeUnit.MILLISECONDS.sleep(rand.nextInt(2000));
        System.out.println(this + "completed");
    }

    public String toString() {
        return String.format("%1$-3d", id);
    }

}

// Waits on the CountDownLatch
class WaitingTask implements Runnable{

    private static int counter = 0;
    private final int id = counter++;
    private final CountDownLatch latch;

    WaitingTask(CountDownLatch latch){
        this.latch = latch;
    }

    @Override
    public void run() {
        try {
            latch.await();
            System.out.println("Latch barrier passed for " + this);
        } catch (InterruptedException e) {
            System.out.println(this + " interrupted");
        }
    }

    public String toString() {
        return String.format("WaitingTask %1$-3d ", id);
    }

}

public class CountDownLatchDemo {
    static final int SIZE = 100;
    public static void main(String[] args) {
        ExecutorService exec = Executors.newCachedThreadPool();
        // All must share a single CountDownLatch object:
        CountDownLatch latch = new CountDownLatch(10);
        for(int i=0;i<10;i++) {
            exec.execute(new WaitingTask(latch));
        }
        for(int i=0;i<SIZE;i++) {
            exec.execute(new TaskPortion(latch));
        }
        System.out.println("Launched all tasks");
        exec.shutdown();// Quit when all tasks complete
    }
}

这里写图片描述

CyclicBarrier

A CyclicBarrier is used in situations where you want to create a group of tasks to perform work in parallel, and then wait they are all finished before moving on to the next step(something like join(), it would seem).

class Horse implements Runnable {

    private static int counter = 0;
    private final int id = counter++;
    private int strides = 0;
    private Random rand = new Random();
    private static CyclicBarrier barrier;

    public Horse(CyclicBarrier b) {
        barrier = b;
    }

    public synchronized int getStrides() {
        return strides;
    }

    @Override
    public void run() {
        try {
            while (!Thread.interrupted()) {
                synchronized (this) {
                    strides += rand.nextInt(3);
                }
                barrier.await();
            }
        } catch (InterruptedException e) {
            // A legitimate way to exit
        } catch (BrokenBarrierException e) {
            // This one we want to know about
            throw new RuntimeException(e);
        }
    }

    public String toString() {
        return "Horse " + id + " ";
    }

    public String tracks() {
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < getStrides(); i++) {
            sb.append("*");
        }
        sb.append(id);
        return sb.toString();
    }

}

public class HorseRace {
    static final int FINISH_LINE = 75;
    private List<Horse> horses = new ArrayList<Horse>();
    private ExecutorService exec = Executors.newCachedThreadPool();
    private CyclicBarrier barrier;

    public HorseRace(int nHorses, final int pause) {
        barrier = new CyclicBarrier(nHorses, new Runnable() {

            @Override
            public void run() {
                StringBuilder s = new StringBuilder();
                for (int i = 0; i < FINISH_LINE; i++) {
                    s.append("="); // The fence on the racetrack
                }
                System.out.println(s);
                for (Horse horse : horses) {
                    System.out.println(horse.tracks());
                }
                for (Horse horse : horses) {
                    if (horse.getStrides() >= FINISH_LINE) {
                        System.out.println(horse + "won!");
                        exec.shutdownNow();
                        return;
                    }
                }
                try {
                    TimeUnit.MILLISECONDS.sleep(pause);
                } catch (InterruptedException e) {
                    System.out.println("barrier-action sleep interrupted");
                }
            }

        });

        for(int i=0;i<nHorses;i++) {
            Horse horse = new Horse(barrier);
            horses.add(horse);
            exec.execute(horse);
        }

    }

    public static void main(String[] args) {
        new HorseRace(7,200);
    }
}

A CyclicBarrier can be given a “barrier action,” which is a Runnable that is automatically executed when the count reaches zero.
Once all the tasks have passed the barrier, it is automatically ready for the next round.
这里写图片描述

Nano-ESG数据资源库的构建基于2023年初至2024年秋季期间采集的逾84万条新闻文本,从中系统提炼出企业环境、社会及治理维度的信息。其构建流程首先依据特定术语在德语与英语新闻平台上检索,初步锁定与德国DAX 40成分股企业相关联的报道。随后借助嵌入技术对文本段落执行去重操作,以降低内容冗余。继而采用GLiNER这一跨语言零样本实体识别系统,排除与目标企业无关的文档。在此基础上,通过GPT-3.5与GPT-4o等大规模语言模型对文本进行双重筛选:一方面判定其与ESG议题的相关性,另一方面生成简明的内容概要。最终环节由GPT-4o模型完成,它对每篇文献进行ESG情感倾向(正面、中性或负面)的判定,并标注所涉及的ESG具体维度,从而形成具备时序特征的ESG情感与维度标注数据集。 该数据集适用于多类企业可持续性研究,例如ESG情感趋势分析、ESG维度细分类别研究,以及企业可持续性事件的时序演变追踪。研究者可利用数据集内提供的新闻摘要、情感标签与维度分类,深入考察企业在不同时期的环境、社会及治理表现。此外,借助Bertopic等主题建模方法,能够从数据中识别出与企业相关的核心ESG议题,并观察这些议题随时间的演进轨迹。该资源以其开放获取特性与连续的时间覆盖,为探究企业可持续性表现的动态变化提供了系统化的数据基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值