时间限制: 1 Sec 内存限制: 128 MB
题目描述
众所周知,一战过后,在世界列强建造超无畏级战列舰的竞争之中,旧日本海军根据“个舰优越主义”,建造了扶桑级战列舰,完工时为当时世界上武装最为强大的舰只。
同时,扶桑号战列舰也是舰岛最为科幻的战列舰。
当然,要建造这样的舰船,科技水平是必须的。
同样众所周知的是,德意志科学技术天下第一,所以IJN的司令官从德国学来了一种先进的建船方法。
一只战舰横过来可以看做一个长度为n的序列,每个位置有一个数ai表示这个位置设计的高度。这种先进的造船技术可以每次将一个区间[l,r]内的所有位置高度都+1,求到达最终设计状态的最少操作次数。
如果你不能及时完成的话,IJN司令官会奖励你去参加苏里高海战。
输入
第一行包含一个整数n,表示序列的长度。
第二行包含n个非负整数a1,a2,a3,…,an,表示最终的状态。
输出
输出的第一行是一个正整数m,表示最少的操作次数。
接下来m行每行两个正整数li,ri,表示一次操作。
你需要保证1≤li≤ri≤n。
保证最少次数m≤105,输出可以以任意顺序输出。
样例输入
6
2 3 3 3 3 3
样例输出
3
1 6
1 6
2 6
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
int H[maxn];
int main()
{
stack<int> S;
int n;
int m=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&H[i]);
if(H[i]>H[i-1])m+=H[i]-H[i-1];
}
printf("%d\n",m);
for(int i=1;i<=n;i++)
{
if(H[i]>H[i-1])
{
for(int j=H[i-1];j<H[i];j++)
{
S.push(i);
}
}
if(H[i]>H[i+1])
{
for(int j=H[i+1];j<H[i];j++)
{
printf("%d %d\n",S.top(),i);
S.pop();
}
}
}
return 0;
}