题目:
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where
'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
分析与解答:递归的DFS,不算难,注意判断是否合理的条件。
class Solution{
public:
vector<vector<string> > result;
vector<vector<string> > solveNQueens(int n){
vector<string> path(n,string(n,'.'));
dfs(0,0,n,path);
return result;
}
void dfs(int row,int col,int n,vector<string> &path){
if(row == n){
result.push_back(path);
return;
}
for(int j = 0;j != n;++j){
path[row][j] = 'Q';
if(isSafe(path,n,row,j)){
dfs(row+1,0,n,path);
}
path[row][j] = '.';
}
return;
}
bool isSafe(vector<string> &path,int n,int row,int col){
for(int i = 0;i != row;++i){
if(path[i][col] == 'Q'){
return false;
}
}
int i = row - 1, j = col - 1, k = col + 1;
while((i < row&&i >=0) &&(j >= 0 ||k < n)){
if(path[i][j--] == 'Q'|| path[i][k++] == 'Q'){
return false;
}
i--;
}
return true;
}
};