【机器学习】微软出品!FLAML:一款可以自动化机器学习过程的神器!

本文介绍了微软开源的轻量级Python库FLAML,用于自动高效地寻找最佳机器学习模型。通过实例展示了如何使用FLAML解决分类和回归问题,展示其在Iris和波士顿房价数据集上的应用,强调了其快速和节省时间的特点。

机器学习是我们使用一组算法解决来解决生活中问题的过程。创建机器学习模型很容易,但选择在泛化和性能方面都最适合的模型是一项艰巨的任务。

有多种机器学习算法可用于回归和分类,可根据我们要解决的问题来选择,但选择合适的模型是一个需要高计算成本、时间和精力的过程。

为解决上述问题,今天我给大家分享一款非常棒的工具包:FLAML,它是一个由微软开源的轻量级 Python 库,有助于自动、高效地找出最佳机器学习模型,不仅速度快,节省时间,而且设计轻巧。

让我们详细的介绍一下它吧…

安装所需的库

我们将首先使用 pip 安装来安装 FLAML。下面给出的命令将使用 pip 安装。

pip install flaml
导入所需的库

在这一步中,我们将导入创建机器学习模型和下载数据集所需的所有库。

from flaml import AutoML
解决分类问题

现在我们将从解决分类问题开始。我们将在这里使用的数据是著名的 Iris 数据集,可以从 Seaborn 库轻松加载。让我们开始创建模型。

#Loading the Dataset
from sklearn.datasets import load_iris

为 Automl 创建实例很重要,同时也定义 Automl 设置,因此在这一步中,我们还将创建 Automl 实例并定义设置。

automl = AutoML()
automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'accuracy',
    "task": 'classification'
}

接下来,我们将拆分数据并将其拟合到模型中。最后,我们还将使用模型进行预测并找到最佳模型。

X_train, y_train = load_iris(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
           **automl_settings)
print(automl.predict_proba(X_train).shape)
# Export the best model
print(automl.model)
cf91d0abb82ef7af74746533d6f08f56.png

在这里,我们可以清楚地看到 ExtraTreeEstimator 是此数据的最佳模型。现在让我们打印模型的最佳超参数和准确性。

print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))

dcaf98cc6f17efffb849115ddf3cc0d2.png同样,对于回归问题,我们也将遵循相同的过程。

解决回归问题

现在将解决一个回归问题。我们将在这里使用的数据是著名的波士顿数据集,可以从 Seaborn 库轻松加载。我们可以遵循与分类问题完全相同的过程。

from sklearn.datasets import load_boston

automl = AutoML()

automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'r2',
    "task": 'regression'
}
X_train, y_train = load_boston(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
           **automl_settings)
# Predict
print(automl.predict(X_train).shape)
# Export the best model
print(automl.model)
16bc94d07a1c812b65d666cf816e035a.png
print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1-automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time))
8a6aaa85e35af96bd920edefc8688931.png

在这里,我们也可以清楚地看到回归问题的最佳模型和超参数。同样,你可以对你关注的数据集执行此过程,并找到最佳模型和超参数。


 

推荐阅读:

入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python | 实战项目 |学Python就是这条捷径

量化: 定投基金到底能赚多少钱?  | 我用Python对去年800只基金的数据分析

干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析|   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记灯谜答题王 |用Python做个海量小姐姐素描图碟中谍这么火,我用机器学习做个迷你推荐系统电影

趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!

AI: 会做诗的机器人给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影

小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!

年度爆款文案


 

 

 

 

 

 


 

 

 
点阅读原文,看Python全套!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值