[Deep Learning-03]DQN for Flappybirld

本文介绍了使用深度Q学习算法(DQN)应用于著名游戏Flappy Bird的实现过程。DQN是一种卷积神经网络,接受原始像素作为输入,预测未来奖励的价值函数。实验中,通过去除游戏背景加速了训练过程。网络结构包含多层卷积和最大池化层,采用Adam优化器进行训练,并线性衰减探索率(ϵ)以平衡探索与利用策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7 mins version: DQN for flappy bird

Overview

This project follows the description of the Deep Q Learning algorithm described in Playing Atari with Deep Reinforcement Learning [2] and shows that this learning algorithm can be further generalized to the notorious Flappy Bird.

Installation Dependencies:

  • Python 2.7 or 3
  • TensorFlow 0.7
  • pygame
  • OpenCV-Python

How to Run?

git clone https://github.com/yenchenlin1994/DeepLearningFlappyBird.git
cd DeepLearningFlappyBird
python deep_q_network.py

What is Deep Q-Network?

It is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards.

For those who are interested in deep reinforcement learning, I highly recommend to read the following post:

Demystifying Deep Reinforcement Learning

Deep Q-Network Algorithm

The pseudo-code for the Deep Q Learning algorithm, as given in [1], can be found below:

Initialize replay memory D to size N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialize state s_1
    for t = 1, T do
        With probability ϵ select random action a_t
        otherwise select a_t=max_a  Q(s_t,a; θ_i)
        Execute action a_t in emulator and observe r_t and s_(t+1)
        Store transition (s_t,a_t,r_t,s_(t+1)) in D
        Sample a minibatch of transitions (s_j,a_j,r_j,s_(j+1)) from D
        Set y_j:=
            r_j for terminal s_(j+1)
            r_j+γ*max_(a^' )  Q(s_(j+1),a'; θ_i) for non-terminal s_(j+1)
        Perform a gradient step on (y_j-Q(s_j,a_j; θ_i))^2 with respect to θ
    end for
end for

Experiments

Environment

Since deep Q-network is trained on the raw pixel values observed from the game screen at each time step, [3] finds that remove the background appeared in the original game can make it converge faster. This process can be visualized as the following figure:

Network Architecture

According to [1], I first preprocessed the game screens with following steps:

  1. Convert image to grayscale
  2. Resize image to 80x80
  3. Stack last 4 frames to produce an 80x80x4 input array for network

The architecture of the network is shown in the figure below. The first layer convolves the input image with an 8x8x4x32 kernel at a stride size of 4. The output is then put through a 2x2 max pooling layer. The second layer convolves with a 4x4x32x64 kernel at a stride of 2. We then max pool again. The third layer convolves with a 3x3x64x64 kernel at a stride of 1. We then max pool one more time. The last hidden layer consists of 256 fully connected ReLU nodes.

The final output layer has the same dimensionality as the number of valid actions which can be performed in the game, where the 0th index always corresponds to doing nothing. The values at this output layer represent the Q function given the input state for each valid action. At each time step, the network performs whichever action corresponds to the highest Q value using a ϵ greedy policy.

Training

At first, I initialize all weight matrices randomly using a normal distribution with a standard deviation of 0.01, then set the replay memory with a max size of 500,00 experiences.

I start training by choosing actions uniformly at random for the first 10,000 time steps, without updating the network weights. This allows the system to populate the replay memory before training begins.

Note that unlike [1], which initialize ϵ = 1, I linearly anneal ϵ from 0.1 to 0.0001 over the course of the next 3000,000 frames. The reason why I set it this way is that agent can choose an action every 0.03s (FPS=30) in our game, high ϵ will make it flap too much and thus keeps itself at the top of the game screen and finally bump the pipe in a clumsy way. This condition will make Q function converge relatively slow since it only start to look other conditions when ϵ is low.
However, in other games, initialize ϵ to 1 is more reasonable.

During training time, at each time step, the network samples minibatches of size 32 from the replay memory to train on, and performs a gradient step on the loss function described above using the Adam optimization algorithm with a learning rate of 0.000001. After annealing finishes, the network continues to train indefinitely, with ϵ fixed at 0.001.

FAQ

Checkpoint not found

Change first line of saved_networks/checkpoint to

model_checkpoint_path: "saved_networks/bird-dqn-2920000"

How to reproduce?
  1. Comment out these lines

  2. Modify deep_q_network.py’s parameter as follow:

OBSERVE = 10000
EXPLORE = 3000000
FINAL_EPSILON = 0.0001
INITIAL_EPSILON = 0.1

References

[1] Mnih Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level Control through Deep Reinforcement Learning. Nature, 529-33, 2015.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. NIPS, Deep Learning workshop

[3] Kevin Chen. Deep Reinforcement Learning for Flappy Bird Report | Youtube result

Disclaimer

This work is highly based on the following repos:

  1. [sourabhv/FlapPyBird] (https://github.com/sourabhv/FlapPyBird)
  2. asrivat1/DeepLearningVideoGames
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值