MultipleInputs允许定义多个数据源,并且为每一个数据源指定一个独立的输入格式和Mapper,因此可以对多个输入文件执行Reduce操作。
示例源代码:
package org.cy.pack;
import java.io.IOException;
import java.net.URISyntaxException;
import java.util.Date;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
public class ReduceJoin {
public static class SalesRecordMapper extends Mapper<Object,Text,Text,Text>{
public void map(Object key,Text value, Context context) throws InterruptedException{
String record = value.toString();
String[] parts = record.split("\t");
try {
context.write(new Text(parts[0]),new Text("Sales\t"+parts[1]));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
public static class AccountRecordMapper extends Mapper<Object,Text,Text,Text>{
public void map(Object key,Text value, Context context) throws InterruptedException{
String record = value.toString();
String[] parts = record.split("\t");
try {
context.write(new Text(parts[0]),new Text("Accounts\t"+parts[1]));
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
public static class ReduceJoinReducer extends Reducer<Text,Text,Text,Text>{
public void reduce(Text key,Iterable<Text> values,Context context) throws IOException, InterruptedException{
String name = "";
double total = 0.0;
int count = 0;
for(Text val:values){
String[] parts = val.toString().split("\t");
if(parts[0].equals("Sales")){
count++;
total += Float.parseFloat(parts[1]);
}else if(parts[0].equals("Accounts")){
name = parts[1];
}
}
String str = String.format("%d\t%f", count,total);
context.write(new Text(name), new Text(str));
}
}
/**
* @param args
* @throws IOException
* @throws InterruptedException
* @throws ClassNotFoundException
* @throws URISyntaxException
*/
@SuppressWarnings("deprecation")
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
// TODO Auto-generated method stub
Date startTime = new Date();
System.out.println("Job started: " + startTime);
Configuration conf = new Configuration();
Job job = new Job(conf,"ReduceJoin");
job.setJarByClass(ReduceJoin.class);
job.setReducerClass(ReduceJoinReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
Path in1 = new Path(args[0]);
Path in2 = new Path(args[1]);
Path out = new Path(args[2]);
MultipleInputs.addInputPath(job, in1, TextInputFormat.class,SalesRecordMapper.class);
MultipleInputs.addInputPath(job, in2, TextInputFormat.class, AccountRecordMapper.class);
FileOutputFormat.setOutputPath(job, out);
out.getFileSystem(conf).delete(out);
job.waitForCompletion(true);
int flag = job.waitForCompletion(true)?0:1;
Date end_time = new Date();
System.out.println("Job ended: " + end_time);
System.out.println("The job took " + (end_time.getTime() - startTime.getTime()) + " ms.");
System.exit(flag);
}
}
输入文件的内容:
输入内容的各行的字段以tab输入作为分隔符。
sales.txt内容详情:账户ID,销售额,时间
sales.txt:
001 35.99 time
002 12.49 time
004 13.42 time
003 499.99 time
001 78.95 time
002 21.99 time
002 93.45 time
001 9.99 time
Accounts.txt内容详情:账户ID,姓名,时间
Accounts.txt:
001 J time
002 AB time
003 AP time
004 NA time
上传输入文件:
caiyong@caiyong:/opt/hadoop$ bin/hadoop fs -copyFromLocal /home/caiyong/桌面/sales.txt /
caiyong@caiyong:/opt/hadoop$ bin/hadoop fs -copyFromLocal /home/caiyong/桌面/Accounts.txt /
运行配置:
Arhuments:
hdfs://127.0.0.1:8020/sales.txt
hdfs://127.0.0.1:8020/Accounts.txt
hdfs://127.0.0.1:8020/ReduceJoinRes
运行结果:
caiyong@caiyong:/opt/hadoop$ bin/hadoop fs -cat /ReduceJoinRes/*
J 3 124.929998
AB 3 127.929996
AP 1 499.989990
NA 1 13.420000
参考资料:《Hadoop Beginner's Guide》 [英]Garry Tukington 著