SparkSQL DSL 语法

本文介绍如何使用Spark SQL的DSL进行结构化数据管理,包括DataFrame的创建、查询、过滤及分组等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SparkSQL DSL 语法


DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。
可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了

  1. 创建一个 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
  1. 查看 DataFrame 的 Schema 信息
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)
  1. 只查看"username"列数据,
scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
| lisi|
| wangwu|
+--------+
  1. 查看"username"列数据以及"age+1"数据
    注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1).show()
scala> df.select('username, 'age + 1 as "newage").show()
+--------+---------+
|username|(age + 1)|
+--------+---------+
|zhangsan| 21|
| lisi| 31|
| wangwu| 41|
+--------+---------+
  1. 查看"age"大于"30"的数据
scala> df.filter($"age">30).show
+---+---------+
|age| username|
+---+---------+
| 40| wangwu|
+---+---------+
  1. 按照"age"分组,查看数据条数
scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 20| 1|
| 30| 1|
| 40| 1|`
+---+-----+
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值