有N个岛屿,M条路线,每条路都连接两个岛屿,并且每条路都有一个最大承载人数,现在想知道从最西边的岛到最东面的岛最多能有多少人过去
可以看出是最大流的问题,而且源点汇点也都给出了,可以用dinic解决
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#define rep(i, j, k) for(int i = j; i <= k; i++)
#define maxn 100009
#define inf 0x7fffffff
using namespace std;
int s, t;
int n, m, to[maxn * 3], head[maxn], done[maxn], d[maxn], tot, flow[3 * maxn], Next[3 * maxn];
int cur[maxn];
void add (int u, int v, int w)
{
to[++tot] = v;
Next[tot] = head[u];
flow[tot] = w;
head[u] = tot;
}
bool bfs ()
{
memset (done, 0, sizeof (done));
done[s] = 1;
d[s] = 1;
queue <int> q;
q.push (s);
while (!q.empty ())
{
int now = q.front ();
q.pop ();
for (int i = head[now]; i; i = Next[i])
if (!done[to[i]] && flow[i] > 0)
{
d[to[i]] = d[now] + 1;
done[to[i]] = 1;
q.push (to[i]);
}
}
return done[t];
}
int dfs (int x, int a)
{
if (x == t || a == 0)
return a;
int ret = 0, f;
for (int &i = cur[x]; i; i = Next[i])
if (d[to[i]] == d[x] + 1 && flow[i] > 0 && (f = dfs (to[i], min (flow[i], a))) > 0)
{
flow[i] -= f;
flow[i ^ 1] += f;
a -= f;
ret += f;
if (!a)
break;
}
return ret;
}
int MaxFlow ()
{
int ret = 0;
while (bfs ())
{
rep (i, 1, n)
cur[i] = head[i];
ret += dfs (s, inf);
}
return ret;
}
int main ()
{
int ti;
cin >> ti;
while (ti--)
{
int u, v, w, Min = inf, Max = -inf;
memset (head, 0, sizeof (head));
tot = 1;
cin >> n >> m;
rep (i, 1, n)
{
scanf ("%d%d", &u, &v);
if (u < Min)
Min = u, s = i;
if (u > Max)
Max = u, t = i;
}
rep (i, 1, m)
scanf ("%d%d%d", &u, &v, &w), add (u, v, w), add (v, u, w);
cout << MaxFlow () << endl;
}
return 0;
}