ML-AttributeError: ‘BioCAnnotation‘ object has no attribute ‘get_total_location‘解决

本文指导如何在最新版本的negbio库中解决'BioCAnnotation'对象缺失'get_total_location'方法的问题,建议替换为'total_span'属性,并提供讨论区链接。
部署运行你感兴趣的模型镜像

ML-AttributeError: ‘BioCAnnotation‘ object has no attribute ‘get_total_location‘解决

文章目录

1. 解决

 简单来说,就是在现在版本的negbio这个库里面,貌似是已经没有get_total_location这个函数了,你可以使用total.span来代替它,注意是没有括号的哦!
 也就是这样

location = ann.get_total_location()
改为
location = ann.total_span

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

PowerShell 7 环境已加载 (版本: 7.5.2) PowerShell 7 环境已加载 (版本: 7.5.2) PS C:\Users\Administrator\Desktop> cd E:\AI_System\monitoring PS E:\AI_System\monitoring> python test_hardware_monitor.py 2025-08-23 23:35:28 - TestMonitor - INFO - 🚀 开始测试硬件监控模块 2025-08-23 23:35:28 - HardwareMonitor - INFO - ✅ 智能硬件监控模块初始化完成 2025-08-23 23:35:29 - HardwareMonitor - WARNING - ⚠️ OpenHardwareMonitor未运行或不可访问 Win32 exception occurred releasing IUnknown at 0x0000023AE66F50D0 Win32 exception occurred releasing IUnknown at 0x0000023AE674DE30 2025-08-23 23:35:29 - HardwareMonitor - INFO - 📖 已加载 32 条历史数据 2025-08-23 23:35:29 - HardwareMonitor - WARNING - ⚠️ 未找到SpeedFan安装路径 2025-08-23 23:35:29 - HardwareMonitor - INFO - 🚀 硬件监控已启动 Exception in thread HardwareMonitorThread: Traceback (most recent call last): 2025-08-23 23:35:29 - TestMonitor - INFO - 🔧 第一阶段:基本监控测试 File "E:\Python310\lib\threading.py", line 1016, in _bootstrap_inner 2025-08-23 23:35:29 - TestMonitor - INFO - 监控状态: running 2025-08-23 23:35:29 - TestMonitor - INFO - CPU: 0.0% | 内存: 0.0% | 温度: 0.0°C | 风扇: 0 RPM self.run() File "E:\Python310\lib\threading.py", line 953, in run self._target(*self._args, **self._kwargs) File "E:\AI_System\monitoring\hardware_monitor.py", line 230, in _monitor_loop self.log极.debug("🔁 硬件监控线程启动") AttributeError: 'HardwareMonitor' object has no attribute 'log极' 2025-08-23 23:35:30 - TestMonitor - INFO - 监控状态: running 2025-08-23 23:35:30 - TestMonitor - INFO - CPU: 0.0% | 内存: 0.0% | 温度: 0.0°C | 风扇: 0 RPM 2025-08-23 23:35:31 - TestMonitor - INFO - 监控状态: running 2025-08-23 23:35:31 - TestMonitor - INFO - CPU: 0.0% | 内存: 0.0% | 温度: 0.0°C | 风扇: 0 RPM 2025-08-23 23:35:32 - TestMonitor - INFO - 监控状态: running 2025-08-23 23:35:32 - TestMonitor - INFO - CPU: 0.0% | 内存: 0.0% | 温度: 0.0°C | 风扇: 0 RPM 2025-08-23 23:35:33 - TestMonitor - INFO - 监控状态: running 2025-08-23 23:35:33 - TestMonitor - INFO - CPU: 0.0% | 内存: 0.0% | 温度: 0.0°C | 风扇: 0 RPM 2025-08-23 23:35:34 - TestMonitor - INFO - 🛠️ 第二阶段:工具箱功能测试 2025-08-23 23:35:34 - TestMonitor - INFO - 🖥️ 硬件信息: 2025-08-23 23:35:36 - TestMonitor - INFO - CPU: Intel(R) Core(TM) i5-14600KF 2025-08-23 23:35:36 - TestMonitor - INFO - 内存: 2 条 2025-08-23 23:35:36 - TestMonitor - INFO - 磁盘: 4 个 2025-08-23 23:35:36 - TestMonitor - INFO - ⚙️ CPU工具: 2025-08-23 23:35:36 - TestMonitor - INFO - - CPU压力测试: 运行CPU压力测试 2025-08-23 23:35:36 - TestMonitor - INFO - - CPU性能分析: 分析CPU性能瓶颈 2025-08-23 23:35:36 - TestMonitor - INFO - - CPU温度监控: 实时监控CPU温度 2025-08-23 23:35:36 - TestMonitor - INFO - - CPU频率调整: 调整CPU工作频率 2025-08-23 23:35:36 - TestMonitor - INFO - 🌡️ 温度监控: 2025-08-23 23:35:36 - TemperatureTools - WARNING - ⚠️ 检测到异常低温,使用备用温度获取方法 2025-08-23 23:35:36 - TemperatureTools - ERROR - ❌ 备用温度获取失败: winmgmts:root/cimv2.MSAcpi_ThermalZoneTemperature 2025-08-23 23:35:36 - TestMonitor - INFO - 当前温度: 55.3°C 2025-08-23 23:35:36 - TestMonitor - INFO - 历史记录数: 20 2025-08-23 23:35:36 - TestMonitor - INFO - 🌀 风扇控制: 2025-08-23 23:35:36 - TestMonitor - INFO - 当前风扇转速: 1652 RPM 2025-08-23 23:35:36 - TestMonitor - INFO - 当前模式: balanced 2025-08-23 23:35:36 - TestMonitor - INFO - 📊 第三阶段:历史数据测试 2025-08-23 23:35:36 - TestMonitor - INFO - 获取到 20 条历史记录 2025-08-23 23:35:36 - TestMonitor - INFO - 最新记录: CPU=0.6% 温度=66.9°C 2025-08-23 23:35:36 - HardwareMonitor - INFO - 💾 已保存 32 条历史数据 2025-08-23 23:35:36 - HardwareMonitor - INFO - 🛑 硬件监控已停止 2025-08-23 23:35:36 - TestMonitor - INFO - 🛑 硬件监控器已停止 2025-08-23 23:35:36 - TestMonitor - INFO - ✅ 测试完成 PS E:\AI_System\monitoring>
08-24
批量按地图系列(正在修改版) ===================== 工具路径 I:\arcgispro工具箱\自制工具箱.atbx\PLCT11 ===================== 参数 布局名称 问题图斑占地示意图 索引图层 问题图斑范围 排除图层 输出文件夹 C:\Users\Administrator\Desktop\新建文件夹 输出前缀 文件名字段 TBBH 输出格式 JPEG 比例尺 300 DPI 150 相交图层 庭院;附房;房屋建筑图斑 选择要参与出图的图层 庭院;附房;房屋建筑图斑;问题图斑范围 ===================== 消息 开始时间: 2025年11月26日 18:19:35 [2025-11-26 18:19:35] INFO: ===== 参数验证 ===== [2025-11-26 18:19:35] INFO: 索引图层: 问题图斑范围 [2025-11-26 18:19:35] INFO: 输出文件夹: C:\Users\Administrator\Desktop\新建文件夹 [2025-11-26 18:19:35] INFO: 文件名字段: TBBH [2025-11-26 18:19:35] INFO: 比例尺: 300.0 [2025-11-26 18:19:35] INFO: DPI: 150 [2025-11-26 18:19:35] INFO: 排除图层: [] [2025-11-26 18:19:35] INFO: 可见图层: ['庭院', '附房', '房屋建筑图斑', '问题图斑范围'] [2025-11-26 18:19:35] INFO: 相交图层: 庭院;附房;房屋建筑图斑 [2025-11-26 18:19:35] INFO: 使用布局: 问题图斑占地示意图 [2025-11-26 18:19:35] INFO: 使用地图: 地图 [2025-11-26 18:19:35] INFO: 找到索引图层: 问题图斑范围 [2025-11-26 18:19:35] INFO: 索引图层的OID字段: OBJECTID [2025-11-26 18:19:35] INFO: 找到相交图层: 庭院 [2025-11-26 18:19:35] INFO: 找到相交图层: 附房 [2025-11-26 18:19:35] INFO: 找到相交图层: 房屋建筑图斑 [2025-11-26 18:19:35] INFO: 找到 10 个有效索引要素 [2025-11-26 18:19:55] INFO: 图层可见性设置完成 [2025-11-26 18:19:55] ERROR: 主函数错误: 'MapFrame' object has no attribute 'mapClipEnabled' Traceback (most recent call last): File "I:\arcgispro工具箱\自制工具箱.atbx\PLCT11.tool\tool.script.execute.py", line 444, in main AttributeError: 'MapFrame' object has no attribute 'mapClipEnabled' 脚本 批量按地图系列(正在修改版) 失败... 执行(PLCT11)失败。 运行 失败,结束时间: 2025年11月26日 18:19:56 (历时: 20.79 秒)
最新发布
11-27
C:\Users\wangs>nvidia-smi Sun Nov 23 18:46:42 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 556.19 Driver Version: 556.19 CUDA Version: 12.5 |这是我的电脑,在anaconda中操作, (base) C:\Users\wangs>conda activate Resnet (Resnet) C:\Users\wangs>conda install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 usage: conda-script.py [-h] [-v] [--no-plugins] [-V] COMMAND ... conda-script.py: error: unrecognized arguments: --index-url https://download.pytorch.org/whl/cu121 (Resnet) C:\Users\wangs>pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 Looking in indexes: https://download.pytorch.org/whl/cu121 Collecting torch Using cached https://download.pytorch.org/whl/cu121/torch-2.5.1%2Bcu121-cp39-cp39-win_amd64.whl (2449.3 MB) Collecting torchvision Using cached https://download.pytorch.org/whl/cu121/torchvision-0.20.1%2Bcu121-cp39-cp39-win_amd64.whl (6.1 MB) Collecting torchaudio Using cached https://download.pytorch.org/whl/cu121/torchaudio-2.5.1%2Bcu121-cp39-cp39-win_amd64.whl (4.1 MB) Collecting filelock (from torch) Downloading https://download.pytorch.org/whl/filelock-3.19.1-py3-none-any.whl.metadata (2.1 kB) Requirement already satisfied: typing-extensions>=4.8.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from torch) (4.14.1) Collecting networkx (from torch) Downloading https://download.pytorch.org/whl/networkx-3.5-py3-none-any.whl.metadata (6.3 kB) Requirement already satisfied: jinja2 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from torch) (3.1.6) Collecting fsspec (from torch) Downloading https://download.pytorch.org/whl/fsspec-2025.9.0-py3-none-any.whl.metadata (10 kB) Collecting sympy==1.13.1 (from torch) Using cached https://download.pytorch.org/whl/sympy-1.13.1-py3-none-any.whl (6.2 MB) Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch) Downloading https://download.pytorch.org/whl/mpmath-1.3.0-py3-none-any.whl (536 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 1.8 MB/s 0:00:00 Requirement already satisfied: numpy in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from torchvision) (2.0.2) Collecting pillow!=8.3.*,>=5.3.0 (from torchvision) Downloading https://download.pytorch.org/whl/pillow-11.3.0-cp39-cp39-win_amd64.whl.metadata (9.2 kB) Requirement already satisfied: MarkupSafe>=2.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from jinja2->torch) (3.0.2) INFO: pip is looking at multiple versions of networkx to determine which version is compatible with other requirements. This could take a while. Collecting networkx (from torch) Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl.metadata (5.2 kB) Downloading https://download.pytorch.org/whl/pillow-11.3.0-cp39-cp39-win_amd64.whl (7.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.0/7.0 MB 2.9 MB/s 0:00:02 Downloading https://download.pytorch.org/whl/filelock-3.19.1-py3-none-any.whl (15 kB) Downloading https://download.pytorch.org/whl/fsspec-2025.9.0-py3-none-any.whl (199 kB) Downloading https://download.pytorch.org/whl/networkx-3.2.1-py3-none-any.whl (1.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 2.3 MB/s 0:00:00 Installing collected packages: mpmath, sympy, pillow, networkx, fsspec, filelock, torch, torchvision, torchaudio Successfully installed filelock-3.19.1 fsspec-2025.9.0 mpmath-1.3.0 networkx-3.2.1 pillow-11.3.0 sympy-1.13.1 torch-2.5.1+cu121 torchaudio-2.5.1+cu121 torchvision-0.20.1+cu121 (Resnet) C:\Users\wangs>conda install monai Channels: - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Users\wangs\anaconda3\envs\Resnet added / updated specs: - monai The following packages will be downloaded: package | build ---------------------------|----------------- _openmp_mutex-4.5 | 2_gnu 48 KB conda-forge cuda-cudart-12.9.79 | he0c23c2_0 167 KB conda-forge cuda-cudart_win-64-12.9.79 | he0c23c2_0 23 KB conda-forge cuda-cupti-12.9.79 | hac47afa_1 3.8 MB conda-forge cuda-nvrtc-12.9.86 | hac47afa_1 55.8 MB conda-forge cuda-version-12.9 | h4f385c5_3 21 KB conda-forge cudnn-9.10.2.21 | h32ff316_0 19 KB conda-forge filelock-3.19.1 | pyhd8ed1ab_0 18 KB conda-forge fsspec-2025.7.0 | pyhd8ed1ab_0 142 KB conda-forge intel-openmp-2024.2.1 | h57928b3_1083 1.8 MB conda-forge libblas-3.9.0 | 35_h5709861_mkl 64 KB conda-forge libcblas-3.9.0 | 35_h2a3cdd5_mkl 65 KB conda-forge libcublas-12.9.1.4 | hac47afa_1 439.8 MB conda-forge libcudnn-9.10.2.21 | hca898b4_0 486.1 MB conda-forge libcudnn-dev-9.10.2.21 | hca898b4_0 153 KB conda-forge libcudss-0.6.0.5 | hca898b4_0 33.7 MB conda-forge libcufft-11.4.1.4 | hac47afa_1 154.7 MB conda-forge libcurand-10.3.10.19 | hac47afa_1 46.8 MB conda-forge libcusolver-11.7.5.82 | hac47afa_2 189.0 MB conda-forge libcusparse-12.5.10.65 | hac47afa_2 196.9 MB conda-forge liblapack-3.9.0 | 35_hf9ab0e9_mkl 77 KB conda-forge libmagma-2.9.0 | hb6a17ea_3 441.8 MB conda-forge libnvjitlink-12.9.86 | hac47afa_2 26.1 MB conda-forge libtorch-2.7.1 |cuda128_mkl_h2cc4d28_304 517.5 MB conda-forge libuv-1.51.0 | hfd05255_1 290 KB conda-forge llvm-openmp-20.1.8 | h29ce207_0 329 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/man mkl-2024.2.2 | h57928b3_16 98.3 MB conda-forge monai-1.5.1 | pyhd8ed1ab_0 1.2 MB conda-forge mpmath-1.3.0 | pyhd8ed1ab_1 429 KB conda-forge networkx-3.2.1 | pyhd8ed1ab_0 1.1 MB conda-forge optree-0.17.0 | py39h9da4e41_0 326 KB conda-forge pybind11-3.0.1 | pyh7a1b43c_0 227 KB conda-forge pybind11-global-3.0.1 | pyh5e4992e_0 222 KB conda-forge pytorch-2.7.1 |cuda128_mkl_py39_hf237e59_304 22.6 MB conda-forge sleef-3.9.0 | h67fd636_0 2.2 MB conda-forge sympy-1.14.0 | pyh04b8f61_5 4.4 MB conda-forge tbb-2021.13.0 | hd094cb3_4 146 KB conda-forge ------------------------------------------------------------ Total: 2.66 GB The following NEW packages will be INSTALLED: _openmp_mutex conda-forge/win-64::_openmp_mutex-4.5-2_gnu cuda-cudart conda-forge/win-64::cuda-cudart-12.9.79-he0c23c2_0 cuda-cudart_win-64 conda-forge/noarch::cuda-cudart_win-64-12.9.79-he0c23c2_0 cuda-cupti conda-forge/win-64::cuda-cupti-12.9.79-hac47afa_1 cuda-nvrtc conda-forge/win-64::cuda-nvrtc-12.9.86-hac47afa_1 cuda-version conda-forge/noarch::cuda-version-12.9-h4f385c5_3 cudnn conda-forge/win-64::cudnn-9.10.2.21-h32ff316_0 filelock conda-forge/noarch::filelock-3.19.1-pyhd8ed1ab_0 fsspec conda-forge/noarch::fsspec-2025.7.0-pyhd8ed1ab_0 intel-openmp conda-forge/win-64::intel-openmp-2024.2.1-h57928b3_1083 libabseil conda-forge/win-64::libabseil-20250512.1-cxx17_habfad5f_0 libcublas conda-forge/win-64::libcublas-12.9.1.4-hac47afa_1 libcudnn conda-forge/win-64::libcudnn-9.10.2.21-hca898b4_0 libcudnn-dev conda-forge/win-64::libcudnn-dev-9.10.2.21-hca898b4_0 libcudss conda-forge/win-64::libcudss-0.6.0.5-hca898b4_0 libcufft conda-forge/win-64::libcufft-11.4.1.4-hac47afa_1 libcurand conda-forge/win-64::libcurand-10.3.10.19-hac47afa_1 libcusolver conda-forge/win-64::libcusolver-11.7.5.82-hac47afa_2 libcusparse conda-forge/win-64::libcusparse-12.5.10.65-hac47afa_2 libgomp conda-forge/win-64::libgomp-15.2.0-h1383e82_7 libmagma conda-forge/win-64::libmagma-2.9.0-hb6a17ea_3 libnvjitlink conda-forge/win-64::libnvjitlink-12.9.86-hac47afa_2 libprotobuf conda-forge/win-64::libprotobuf-6.31.1-hdcda5b4_2 libtorch conda-forge/win-64::libtorch-2.7.1-cuda128_mkl_h2cc4d28_304 libuv conda-forge/win-64::libuv-1.51.0-hfd05255_1 monai conda-forge/noarch::monai-1.5.1-pyhd8ed1ab_0 mpmath conda-forge/noarch::mpmath-1.3.0-pyhd8ed1ab_1 networkx conda-forge/noarch::networkx-3.2.1-pyhd8ed1ab_0 optree conda-forge/win-64::optree-0.17.0-py39h9da4e41_0 pybind11 conda-forge/noarch::pybind11-3.0.1-pyh7a1b43c_0 pybind11-global conda-forge/noarch::pybind11-global-3.0.1-pyh5e4992e_0 pytorch conda-forge/win-64::pytorch-2.7.1-cuda128_mkl_py39_hf237e59_304 sleef conda-forge/win-64::sleef-3.9.0-h67fd636_0 sympy conda-forge/noarch::sympy-1.14.0-pyh04b8f61_5 The following packages will be SUPERSEDED by a higher-priority channel: llvm-openmp conda-forge::llvm-openmp-21.1.6-h4fa8~ --> anaconda/pkgs/main::llvm-openmp-20.1.8-h29ce207_0 The following packages will be DOWNGRADED: libblas 3.11.0-2_hf2e6a31_mkl --> 3.9.0-35_h5709861_mkl libcblas 3.11.0-2_h2a3cdd5_mkl --> 3.9.0-35_h2a3cdd5_mkl liblapack 3.11.0-2_hf9ab0e9_mkl --> 3.9.0-35_hf9ab0e9_mkl mkl 2025.3.0-hac47afa_454 --> 2024.2.2-h57928b3_16 tbb 2022.3.0-hd094cb3_1 --> 2021.13.0-hd094cb3_4 Proceed ([y]/n)? y done (Resnet) C:\Users\wangs>conda install pandas numpy scikit-learn -y Channels: - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro done (Resnet) C:\Users\wangs>pip install tensorboard Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting tensorboard Using cached https://pypi.tuna.tsinghua.edu.cn/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl (5.5 MB) Collecting absl-py>=0.4 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl (135 kB) Collecting grpcio>=1.48.2 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/de/d1/fb90564a981eedd3cd87dc6bfd7c249e8a515cfad1ed8e9af73be223cd3b/grpcio-1.76.0-cp39-cp39-win_amd64.whl (4.7 MB) Collecting markdown>=2.6.8 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/70/ae/44c4a6a4cbb496d93c6257954260fe3a6e91b7bed2240e5dad2a717f5111/markdown-3.9-py3-none-any.whl (107 kB) Requirement already satisfied: numpy>=1.12.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (2.0.2) Requirement already satisfied: packaging in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (25.0) Requirement already satisfied: pillow in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (11.3.0) Collecting protobuf!=4.24.0,>=3.19.6 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a2/0f/77b5a12825d59af2596634f062eb1a472f44494965a05dcd97cb5daf3ae5/protobuf-6.33.1-cp39-cp39-win_amd64.whl (436 kB) Requirement already satisfied: setuptools>=41.0.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from tensorboard) (80.9.0) Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB) Collecting werkzeug>=1.0.1 (from tensorboard) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/52/24/ab44c871b0f07f491e5d2ad12c9bd7358e527510618cb1b803a88e986db1/werkzeug-3.1.3-py3-none-any.whl (224 kB) Requirement already satisfied: typing-extensions~=4.12 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from grpcio>=1.48.2->tensorboard) (4.14.1) Requirement already satisfied: importlib-metadata>=4.4 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from markdown>=2.6.8->tensorboard) (8.7.0) Requirement already satisfied: zipp>=3.20 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard) (3.23.0) Requirement already satisfied: MarkupSafe>=2.1.1 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from werkzeug>=1.0.1->tensorboard) (3.0.2) Installing collected packages: werkzeug, tensorboard-data-server, protobuf, grpcio, absl-py, markdown, tensorboard Successfully installed absl-py-2.3.1 grpcio-1.76.0 markdown-3.9 protobuf-6.33.1 tensorboard-2.20.0 tensorboard-data-server-0.7.2 werkzeug-3.1.3 (Resnet) C:\Users\wangs>pip install nibabel Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting nibabel Downloading https://pypi.tuna.tsinghua.edu.cn/packages/43/b2/dc384197be44e2a640bb43311850e23c2c30f3b82ce7c8cdabbf0e53045e/nibabel-5.3.2-py3-none-any.whl (3.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.3/3.3 MB 10.2 MB/s 0:00:00 Collecting importlib-resources>=5.12 (from nibabel) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a4/ed/1f1afb2e9e7f38a545d628f864d562a5ae64fe6f7a10e28ffb9b185b4e89/importlib_resources-6.5.2-py3-none-any.whl (37 kB) Requirement already satisfied: numpy>=1.22 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from nibabel) (2.0.2) Requirement already satisfied: packaging>=20 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from nibabel) (25.0) Requirement already satisfied: typing-extensions>=4.6 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from nibabel) (4.14.1) Requirement already satisfied: zipp>=3.1.0 in c:\users\wangs\anaconda3\envs\resnet\lib\site-packages (from importlib-resources>=5.12->nibabel) (3.23.0) Installing collected packages: importlib-resources, nibabel Successfully installed importlib-resources-6.5.2 nibabel-5.3.2 (Resnet) C:\Users\wangs>pip install chardet Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting chardet Using cached https://pypi.tuna.tsinghua.edu.cn/packages/38/6f/f5fbc992a329ee4e0f288c1fe0e2ad9485ed064cac731ed2fe47dcc38cbf/chardet-5.2.0-py3-none-any.whl (199 kB) Installing collected packages: chardet Successfully installed chardet-5.2.0 (Resnet) C:\Users\wangs>conda install tqdm -y Channels: done (Resnet) C:\Users\wangs>python -c "import torch; print('PyTorch:', torch.__version__); print('CUDA可用:', torch.cuda.is_available())" Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\__init__.py", line 2126, in <module> from torch import _VF as _VF, functional as functional # usort: skip File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\functional.py", line 8, in <module> import torch.nn.functional as F File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\nn\__init__.py", line 8, in <module> from torch.nn.modules import * # usort: skip # noqa: F403 File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\nn\modules\__init__.py", line 1, in <module> from .module import Module # usort: skip File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\nn\modules\module.py", line 17, in <module> from torch.utils._python_dispatch import is_traceable_wrapper_subclass File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\utils\__init__.py", line 8, in <module> from torch.utils import ( File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\utils\data\__init__.py", line 1, in <module> from torch.utils.data.dataloader import ( File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\utils\data\dataloader.py", line 21, in <module> import torch.distributed as dist File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\__init__.py", line 122, in <module> from .device_mesh import DeviceMesh, init_device_mesh File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\device_mesh.py", line 40, in <module> from torch.distributed.distributed_c10d import ( File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\distributed_c10d.py", line 236, in <module> class Backend(str): # noqa: SLOT000 File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\distributed\distributed_c10d.py", line 287, in Backend XCCL: ProcessGroup.BackendType.XCCL, AttributeError: type object 'torch._C._distributed_c10d.BackendType' has no attribute 'XCCL' (Resnet) C:\Users\wangs>pip uninstall torch torchvision torchaudio -y Found existing installation: torch 2.5.1+cu121 Uninstalling torch-2.5.1+cu121: Successfully uninstalled torch-2.5.1+cu121 WARNING: Failed to remove contents in a temporary directory 'C:\Users\wangs\anaconda3\envs\Resnet\Lib\site-packages\torch\~ib'. You can safely remove it manually. Found existing installation: torchvision 0.20.1+cu121 Uninstalling torchvision-0.20.1+cu121: Successfully uninstalled torchvision-0.20.1+cu121 Found existing installation: torchaudio 2.5.1+cu121 Uninstalling torchaudio-2.5.1+cu121: Successfully uninstalled torchaudio-2.5.1+cu121 (Resnet) C:\Users\wangs>conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia Channels: - pytorch - nvidia - conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - defaults Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: C:\Users\wangs\anaconda3\envs\Resnet added / updated specs: - pytorch - pytorch-cuda=11.8 - torchaudio - torchvision The following packages will be downloaded: package | build ---------------------------|----------------- cuda-cccl-12.9.27 | 0 16 KB nvidia cuda-cccl_win-64-12.9.27 | 0 1.1 MB nvidia cuda-cudart-11.8.89 | 0 1.4 MB nvidia cuda-cudart-dev-11.8.89 | 0 723 KB nvidia cuda-cupti-11.8.87 | 0 11.5 MB nvidia cuda-libraries-11.8.0 | 0 1 KB nvidia cuda-libraries-dev-11.8.0 | 0 1 KB nvidia cuda-nvrtc-11.8.89 | 0 72.1 MB nvidia cuda-nvrtc-dev-11.8.89 | 0 16.1 MB nvidia cuda-nvtx-11.8.86 | 0 43 KB nvidia cuda-profiler-api-12.9.79 | 0 19 KB nvidia cuda-runtime-11.8.0 | 0 1 KB nvidia imath-3.1.12 | hbb528cf_0 157 KB conda-forge libabseil-20250127.1 | cxx17_h4eb7d71_0 1.8 MB conda-forge libcublas-11.11.3.6 | 0 33 KB nvidia libcublas-dev-11.11.3.6 | 0 375.9 MB nvidia libcufft-10.9.0.58 | 0 6 KB nvidia libcufft-dev-10.9.0.58 | 0 144.6 MB nvidia libcurand-dev-10.3.5.147 | 0 49.7 MB nvidia libcusolver-11.4.1.48 | 0 29 KB nvidia libcusolver-dev-11.4.1.48 | 0 94.1 MB nvidia libcusparse-11.7.5.86 | 0 13 KB nvidia libcusparse-dev-11.7.5.86 | 0 175.7 MB nvidia libnpp-11.8.0.86 | 0 294 KB nvidia libnpp-dev-11.8.0.86 | 0 143.2 MB nvidia libnvjpeg-11.9.0.86 | 0 4 KB nvidia libnvjpeg-dev-11.9.0.86 | 0 1.9 MB nvidia libopencv-4.12.0 |qt6_py39h45bf879_600 32.6 MB conda-forge libopenvino-2025.0.0 | hb1d9b14_3 3.3 MB conda-forge libopenvino-auto-batch-plugin-2025.0.0| h04f32e0_3 99 KB conda-forge libopenvino-auto-plugin-2025.0.0| h04f32e0_3 189 KB conda-forge libopenvino-hetero-plugin-2025.0.0| hb61b842_3 157 KB conda-forge libopenvino-intel-cpu-plugin-2025.0.0| hb1d9b14_3 8.3 MB conda-forge libopenvino-intel-gpu-plugin-2025.0.0| hb1d9b14_3 7.7 MB conda-forge libopenvino-ir-frontend-2025.0.0| hb61b842_3 156 KB conda-forge libopenvino-onnx-frontend-2025.0.0| hf9c6bd6_3 1013 KB conda-forge libopenvino-paddle-frontend-2025.0.0| hf9c6bd6_3 418 KB conda-forge libopenvino-pytorch-frontend-2025.0.0| he0c23c2_3 677 KB conda-forge libopenvino-tensorflow-frontend-2025.0.0| hd51e7bd_3 864 KB conda-forge libopenvino-tensorflow-lite-frontend-2025.0.0| he0c23c2_3 329 KB conda-forge libprotobuf-5.29.3 | hd33f5f0_2 6.7 MB conda-forge libtorch-2.5.1 |cpu_mkl_hf54a72f_117 31.6 MB conda-forge opencv-4.12.0 |qt6_py39hb5cec6c_600 27 KB conda-forge openexr-3.3.5 | h4750f91_0 1.0 MB conda-forge pthread-stubs-0.4 | h0e40799_1002 9 KB conda-forge py-opencv-4.12.0 |qt6_py39h54bbc76_600 1.1 MB conda-forge pytorch-2.5.1 |cpu_mkl_py39_hab059a2_117 20.8 MB conda-forge pytorch-cuda-11.8 | h24eeafa_6 7 KB pytorch pytorch-mutex-1.0 | cuda 3 KB pytorch setuptools-75.8.2 | pyhff2d567_0 760 KB conda-forge torchaudio-2.5.1 | py39_cu118 7.1 MB pytorch torchvision-0.20.1 | py39_cu118 7.7 MB pytorch ------------------------------------------------------------ Total: 1.19 GB The following NEW packages will be INSTALLED: cuda-cccl nvidia/win-64::cuda-cccl-12.9.27-0 cuda-cccl_win-64 nvidia/win-64::cuda-cccl_win-64-12.9.27-0 cuda-cudart-dev nvidia/win-64::cuda-cudart-dev-11.8.89-0 cuda-libraries nvidia/win-64::cuda-libraries-11.8.0-0 cuda-libraries-dev nvidia/win-64::cuda-libraries-dev-11.8.0-0 cuda-nvrtc-dev nvidia/win-64::cuda-nvrtc-dev-11.8.89-0 cuda-nvtx nvidia/win-64::cuda-nvtx-11.8.86-0 cuda-profiler-api nvidia/win-64::cuda-profiler-api-12.9.79-0 cuda-runtime nvidia/win-64::cuda-runtime-11.8.0-0 lcms2 conda-forge/win-64::lcms2-2.17-hbcf6048_0 libcublas-dev nvidia/win-64::libcublas-dev-11.11.3.6-0 libcufft-dev nvidia/win-64::libcufft-dev-10.9.0.58-0 libcurand-dev nvidia/win-64::libcurand-dev-10.3.5.147-0 libcusolver-dev nvidia/win-64::libcusolver-dev-11.4.1.48-0 libcusparse-dev nvidia/win-64::libcusparse-dev-11.7.5.86-0 libgcc conda-forge/win-64::libgcc-15.2.0-h1383e82_7 libnpp nvidia/win-64::libnpp-11.8.0.86-0 libnpp-dev nvidia/win-64::libnpp-dev-11.8.0.86-0 libnvjpeg nvidia/win-64::libnvjpeg-11.9.0.86-0 libnvjpeg-dev nvidia/win-64::libnvjpeg-dev-11.9.0.86-0 libwebp conda-forge/win-64::libwebp-1.6.0-h4d5522a_0 libxcb conda-forge/win-64::libxcb-1.17.0-h0e4246c_0 openjpeg conda-forge/win-64::openjpeg-2.5.4-h24db6dd_0 pillow conda-forge/win-64::pillow-11.3.0-py39hbad85af_0 pthread-stubs conda-forge/win-64::pthread-stubs-0.4-h0e40799_1002 pytorch-cuda pytorch/win-64::pytorch-cuda-11.8-h24eeafa_6 pytorch-mutex pytorch/noarch::pytorch-mutex-1.0-cuda torchaudio pytorch/win-64::torchaudio-2.5.1-py39_cu118 torchvision pytorch/win-64::torchvision-0.20.1-py39_cu118 xorg-libxau conda-forge/win-64::xorg-libxau-1.0.12-hba3369d_1 xorg-libxdmcp conda-forge/win-64::xorg-libxdmcp-1.1.5-hba3369d_1 The following packages will be REMOVED: libmagma-2.9.0-hb6a17ea_3 The following packages will be SUPERSEDED by a higher-priority channel: cuda-cudart conda-forge::cuda-cudart-12.9.79-he0c~ --> nvidia::cuda-cudart-11.8.89-0 cuda-cupti conda-forge::cuda-cupti-12.9.79-hac47~ --> nvidia::cuda-cupti-11.8.87-0 cuda-nvrtc conda-forge::cuda-nvrtc-12.9.86-hac47~ --> nvidia::cuda-nvrtc-11.8.89-0 libcublas conda-forge::libcublas-12.9.1.4-hac47~ --> nvidia::libcublas-11.11.3.6-0 libcufft conda-forge::libcufft-11.4.1.4-hac47a~ --> nvidia::libcufft-10.9.0.58-0 libcusolver conda-forge::libcusolver-11.7.5.82-ha~ --> nvidia::libcusolver-11.4.1.48-0 libcusparse conda-forge::libcusparse-12.5.10.65-h~ --> nvidia::libcusparse-11.7.5.86-0 The following packages will be DOWNGRADED: imath 3.2.1-h1608b31_0 --> 3.1.12-hbb528cf_0 libabseil 20250512.1-cxx17_habfad5f_0 --> 20250127.1-cxx17_h4eb7d71_0 libopencv 4.12.0-qt6_py39hee57e69_602 --> 4.12.0-qt6_py39h45bf879_600 libopenvino 2025.2.0-hbf28c98_1 --> 2025.0.0-hb1d9b14_3 libopenvino-auto-~ 2025.2.0-hdd9a157_1 --> 2025.0.0-h04f32e0_3 libopenvino-auto-~ 2025.2.0-hdd9a157_1 --> 2025.0.0-h04f32e0_3 libopenvino-heter~ 2025.2.0-hc39e7c6_1 --> 2025.0.0-hb61b842_3 libopenvino-intel~ 2025.2.0-hbf28c98_1 --> 2025.0.0-hb1d9b14_3 libopenvino-intel~ 2025.2.0-hbf28c98_1 --> 2025.0.0-hb1d9b14_3 libopenvino-ir-fr~ 2025.2.0-hc39e7c6_1 --> 2025.0.0-hb61b842_3 libopenvino-onnx-~ 2025.2.0-hee3bb10_1 --> 2025.0.0-hf9c6bd6_3 libopenvino-paddl~ 2025.2.0-hee3bb10_1 --> 2025.0.0-hf9c6bd6_3 libopenvino-pytor~ 2025.2.0-hac47afa_1 --> 2025.0.0-he0c23c2_3 libopenvino-tenso~ 2025.2.0-h293fe96_1 --> 2025.0.0-hd51e7bd_3 libopenvino-tenso~ 2025.2.0-hac47afa_1 --> 2025.0.0-he0c23c2_3 libprotobuf 6.31.1-hdcda5b4_2 --> 5.29.3-hd33f5f0_2 libtorch 2.7.1-cuda128_mkl_h2cc4d28_304 --> 2.5.1-cpu_mkl_hf54a72f_117 opencv 4.12.0-qt6_py39h5bb9280_602 --> 4.12.0-qt6_py39hb5cec6c_600 openexr 3.3.5-hed76565_1 --> 3.3.5-h4750f91_0 py-opencv 4.12.0-qt6_py39h58a0e84_602 --> 4.12.0-qt6_py39h54bbc76_600 pytorch 2.7.1-cuda128_mkl_py39_hf237e59_304 --> 2.5.1-cpu_mkl_py39_hab059a2_117 setuptools 80.9.0-pyhff2d567_0 --> 75.8.2-pyhff2d567_0 Proceed ([y]/n)? y done (Resnet) C:\Users\wangs>nvcc --version 'nvcc' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs>conda remove pytorch torchvision torchaudio pytorch-cuda libtorch "libopenvino*" -y PackagesNotFoundError: The following packages are missing from the target environment: - libopenvino* (Resnet) C:\Users\wangs>conda clean --packages --tarballs -y Will remove 199 (4.00 GB) tarball(s). Will remove 167 (7.13 GB) package(s). WARNING: cannot remove, file permissions: C:\Users\wangs\anaconda3\pkgs\pytorch-2.7.1-cuda128_mkl_py39_hf237e59_304 (Resnet) C:\Users\wangs>conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia --override-channels Channels: - pytorch - nvidia Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>conda remove pytorch torchvision torchaudio pytorch-cuda libtorch "libopenvino*" "cuda-cccl*" cuda-cccl cuda-cccl_win-64 cuda-cudart_win-64 cuda-profiler-api cuda-version -y PackagesNotFoundError: The following packages are missing from the target environment: - cuda-cccl* (Resnet) C:\Users\wangs>conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia --override-channels Channels: - pytorch - nvidia Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>conda remove -y \ PackagesNotFoundError: The following packages are missing from the target environment: - \ (Resnet) C:\Users\wangs> "pytorch" "libtorch" "pytorch-cuda" "pytorch-mutex" \ '"pytorch"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "libopenvino*" \ '"libopenvino*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "cuda-cccl*" "cuda-cudart_win-64" "cuda-profiler-api" "cuda-version" \ '"cuda-cccl*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> conda remove -y \ PackagesNotFoundError: The following packages are missing from the target environment: - \ (Resnet) C:\Users\wangs> "pytorch" "libtorch" "pytorch-cuda" "pytorch-mutex" \ '"pytorch"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "libopenvino*" \ '"libopenvino*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs> "cuda-cccl*" "cuda-cudart_win-64" "cuda-profiler-api" "cuda-version" \ '"cuda-cccl*"' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 (Resnet) C:\Users\wangs>conda remove -y pytorch libtorch pytorch-cuda pytorch-mutex libopenvino-pytorch-frontend libopenvino libopenvino-auto-batch libopenvino-dev libopenvino-hetero-plugin libopenvino-ir-frontend libopenvino-onnx-frontend libopenvino-paddle-frontend libopenvino-pytorch-frontend libopenvino-tensorflow-frontend libopenvino-tensorflow-lite-frontend cuda-cccl cuda-cccl_win-64 cuda-cudart_win-64 cuda-profiler-api cuda-version PackagesNotFoundError: The following packages are missing from the target environment: - libopenvino-dev - libopenvino-auto-batch (Resnet) C:\Users\wangs>conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia --override-channels Channels: - pytorch - nvidia Platform: win-64 Collecting package metadata (repodata.json): done Solving environment: done # All requested packages already installed. (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia openvino" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino 2025.0.0 hb1d9b14_3 conda-forge libopenvino-auto-batch-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-auto-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-hetero-plugin 2025.0.0 hb61b842_3 conda-forge libopenvino-intel-cpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-intel-gpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-ir-frontend 2025.0.0 hb61b842_3 conda-forge libopenvino-onnx-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-paddle-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libopenvino-tensorflow-frontend 2025.0.0 hd51e7bd_3 conda-forge libopenvino-tensorflow-lite-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>conda list | findstr /I "torch cuda nvidia openvino" cuda-cccl 12.9.27 0 nvidia cuda-cccl_win-64 12.9.27 0 nvidia cuda-cudart 11.8.89 0 nvidia cuda-cudart-dev 11.8.89 0 nvidia cuda-cudart_win-64 12.9.79 he0c23c2_0 conda-forge cuda-cupti 11.8.87 0 nvidia cuda-libraries 11.8.0 0 nvidia cuda-libraries-dev 11.8.0 0 nvidia cuda-nvrtc 11.8.89 0 nvidia cuda-nvrtc-dev 11.8.89 0 nvidia cuda-nvtx 11.8.86 0 nvidia cuda-profiler-api 12.9.79 0 nvidia cuda-runtime 11.8.0 0 nvidia cuda-version 12.9 h4f385c5_3 conda-forge libcublas 11.11.3.6 0 nvidia libcublas-dev 11.11.3.6 0 nvidia libcufft 10.9.0.58 0 nvidia libcufft-dev 10.9.0.58 0 nvidia libcurand-dev 10.3.5.147 0 nvidia libcusolver 11.4.1.48 0 nvidia libcusolver-dev 11.4.1.48 0 nvidia libcusparse 11.7.5.86 0 nvidia libcusparse-dev 11.7.5.86 0 nvidia libnpp 11.8.0.86 0 nvidia libnpp-dev 11.8.0.86 0 nvidia libnvjpeg 11.9.0.86 0 nvidia libnvjpeg-dev 11.9.0.86 0 nvidia libopenvino 2025.0.0 hb1d9b14_3 conda-forge libopenvino-auto-batch-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-auto-plugin 2025.0.0 h04f32e0_3 conda-forge libopenvino-hetero-plugin 2025.0.0 hb61b842_3 conda-forge libopenvino-intel-cpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-intel-gpu-plugin 2025.0.0 hb1d9b14_3 conda-forge libopenvino-ir-frontend 2025.0.0 hb61b842_3 conda-forge libopenvino-onnx-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-paddle-frontend 2025.0.0 hf9c6bd6_3 conda-forge libopenvino-pytorch-frontend 2025.0.0 he0c23c2_3 conda-forge libopenvino-tensorflow-frontend 2025.0.0 hd51e7bd_3 conda-forge libopenvino-tensorflow-lite-frontend 2025.0.0 he0c23c2_3 conda-forge libtorch 2.5.1 cpu_mkl_hf54a72f_117 conda-forge pytorch 2.5.1 cpu_mkl_py39_hab059a2_117 conda-forge pytorch-cuda 11.8 h24eeafa_6 pytorch pytorch-mutex 1.0 cuda pytorch torchaudio 2.5.1 pypi_0 pypi torchvision 0.20.1 pypi_0 pypi (Resnet) C:\Users\wangs>where python C:\Users\wangs\anaconda3\envs\Resnet\python.exe C:\Users\wangs\AppData\Local\Programs\Python\Python313\python.exe C:\Users\wangs\AppData\Local\Microsoft\WindowsApps\python.exe (Resnet) C:\Users\wangs>where pip C:\Users\wangs\anaconda3\envs\Resnet\Scripts\pip.exe C:\Users\wangs\AppData\Local\Programs\Python\Python313\Scripts\pip.exe (Resnet) C:\Users\wangs>where torch 信息: 用提供的模式无法找到文件。 (Resnet) C:\Users\wangs>pip show torch Name: torch Version: 2.5.1 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Home-page: https://pytorch.org/ Author: PyTorch Team Author-email: packages@pytorch.org License: BSD-3-Clause Location: c:\users\wangs\anaconda3\envs\resnet\lib\site-packages Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions Required-by: monai, torchaudio, torchvision (Resnet) C:\Users\wangs>python -m torch.utils.collect_env Traceback (most recent call last): File "C:\Users\wangs\anaconda3\envs\Resnet\lib\runpy.py", line 188, in _run_module_as_main mod_name, mod_spec, code = _get_module_details(mod_name, _Error) File "C:\Users\wangs\anaconda3\envs\Resnet\lib\runpy.py", line 111, in _get_module_details __import__(pkg_name) File "C:\Users\wangs\anaconda3\envs\Resnet\lib\site-packages\torch\__init__.py", line 367, in <module> from torch._C import * # noqa: F403 ImportError: DLL load failed while importing _C: 找不到指定的程序。
11-24
import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, logging as hf_logging ) import json import logging import os import re from typing import Dict, Any, Union from datetime import datetime # 关闭HF冗长日志 hf_logging.set_verbosity_error() # 配置日志 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # 确保输出目录存在 output_dir = r"D:\paper" os.makedirs(output_dir, exist_ok=True) class DroneReportGenerator: def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"): try: # 初始化tokenizer(支持中文) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.tokenizer.padding_side = "left" # 更适合生成任务 # 加载模型(优化内存使用) self.model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, trust_remote_code=True, low_cpu_mem_usage=True ).eval() # 无人机专属生成配置 self.generation_config = { "max_new_tokens": 1024, "temperature": 0.3, "top_p": 0.92, "repetition_penalty": 1.15, "do_sample": True, "early_stopping": True, "pad_token_id": self.tokenizer.eos_token_id } # 无人机报告模板 self.system_prompt = """你是一个专业的无人机监测报告生成系统,必须严格遵循以下要求: 1. 使用标准JSON格式输出 2. 所有字段都必须填写完整 3. 内容必须基于提供的监测数据 4. 使用正式的技术术语 5. 时间戳使用ISO 8601格式 报告必须包含以下字段: { "监测任务": "任务描述", "监测位置": { "经度": float, "纬度": float, "区域描述": str }, "异常类型": "具体异常现象", "严重程度": "低/中/高/紧急", "环境参数": { "能见度": "描述", "风速": "单位m/s", "光照": "描述" }, "设备状态": { "电池": "百分比", "信号强度": "百分比", "传感器": "正常/异常描述" }, "详细描述": "技术性分析", "建议措施": "具体操作建议", "时间戳": "ISO格式时间" }""" self._log_device_map() except Exception as e: logger.error(f"模型初始化失败: {str(e)}") raise def _log_device_map(self): """记录模型设备分配情况""" try: if hasattr(self.model, "hf_device_map"): device_map = self.model.hf_device_map logger.info(f"模型设备分配: {json.dumps(device_map, indent=2)}") else: logger.info(f"模型主设备: {self.model.device}") except Exception as e: logger.warning(f"设备映射记录失败: {str(e)}") def generate_report(self, task_info: Dict[str, Any]) -> Dict[str, Any]: """生成标准化无人机监测报告""" try: current_time = datetime.now().isoformat() prompt = self._build_prompt(task_info, current_time) raw_output = self._generate_text(prompt) output_text = self._process_output(raw_output) report = self._validate_and_fix_json(output_text, task_info, current_time) # 保存报告到D:\paper timestamp_str = current_time.replace(":", "-").split(".")[0] report_path = os.path.join(output_dir, f"drone_report_{timestamp_str}.json") with open(report_path, "w", encoding="utf-8") as f: json.dump(report, f, indent=2, ensure_ascii=False) logger.info(f"报告已保存至: {report_path}") return report except Exception as e: logger.error(f"报告生成失败: {str(e)}") return self._emergency_report(task_info, str(e)) def _build_prompt(self, task_info: Dict, timestamp: str) -> str: """构建结构化提示词""" try: location = task_info.get("location", {}) loc_str = f"经度 {location.get('longitude', '未知')}, 纬度 {location.get('latitude', '未知')}" if "description" in location: loc_str += f" ({location['description']})" prompt = f""" {self.system_prompt} 监测数据: - 监测任务: {task_info.get("task", "常规巡检")} - 位置信息: {loc_str} - 异常类型: {task_info.get("anomaly", "无")} - 严重程度: {task_info.get("severity", "低")} 环境参数: - 能见度: {task_info.get("visibility", "良好")} - 风速: {task_info.get("wind_speed", "0")} m/s - 光照: {task_info.get("light", "白天正常")} 设备状态: - 电池: {task_info.get("battery", "100")}% - 信号强度: {task_info.get("signal", "100")}% - 传感器: {task_info.get("sensors", "正常")} 当前时间: {timestamp} 请生成完整的监测报告(严格JSON格式): ```json """ return prompt except Exception as e: logger.error(f"提示构建失败: {str(e)}") raise def _generate_text(self, prompt: str) -> str: """直接使用model.generate生成文本""" try: inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True).to(self.model.device) outputs = self.model.generate(**inputs, **self.generation_config) # 只解码生成的部分 generated_ids = outputs[0][len(inputs["input_ids"][0]):] return self.tokenizer.decode(generated_ids, skip_special_tokens=True) except Exception as e: logger.error(f"文本生成失败: {str(e)}") raise # # def _process_output(self, raw_output: str) -> str: # """处理生成的文本,提取JSON格式内容""" # try: # # 清理首尾空白字符 # text = raw_output.strip() # # 提取"```json“和”```“之间的代码块内容 # if "```json " in text and "```" in text: # # 查找最后一个”```json“出现的位置 # last_json_pos = text.rfind("```json") # if last_json_pos != -1: # code_block = text[last_json_pos + len("```json"):] # end_pos = code_block.find("```") # if end_pos != -1: # text = code_block[:end_pos].strip() # # 如果没有找到标记代码块,尝试直接提取JSON # if not text.startswith("{") and "{" in text: # brace_pos = text.find("{") # text = text[brace_pos:] # # # 确保返回的内容至少包含一个JSON对象 # if text and text[0] == "{": # return text # return f'{{"error": "无效的JSON格式"}}' # # except Exception as e: # logger.error(f"输出处理失败: {str(e)} def _process_output(self, raw_output: str) -> str: """处理生成的文本""" try: # 清理可能的格式问题 text = raw_output.strip() # 提取```json和```之间的内容 if "```json" in text and "```" in text: text = text.split("```json")[-1].split("```")[0].strip() elif "{" in text: # 如果没有代码块标记,尝试从第一个{开始提取 text = text[text.find("{"):] return text except Exception as e: logger.error(f"输出处理失败: {str(e)}") return f'{{"error": "输出处理失败: {str(e)}"}}' def _validate_and_fix_json(self, text: str, task_info: Dict, timestamp: str) -> Dict: """严格的JSON验证和修复""" try: # 预处理:转义未转义的引号 text = re.sub(r'(?<!\\)"', r'\"', text) text = re.sub(r'\\"', r'"', text) # 修复双重转义 # 尝试直接解析 try: report = json.loads(text) if isinstance(report, dict): return report except: pass # 高级修复:重建JSON结构 text = self._advanced_json_repair(text) try: report = json.loads(text) except json.JSONDecodeError as e: logger.warning(f"高级修复失败: {str(e)}") # 最终回退方案 report = self._create_default_report(task_info, timestamp) report["_parsing_error"] = str(e) report["_raw_output"] = text[:100] + "..." return report # 验证必需字段 default_report = self._create_default_report(task_info, timestamp) for key, value in default_report.items(): if key not in report or not report[key]: if isinstance(value, dict): report[key] = {k: v for k, v in value.items() if k not in report.get(key, {})} else: report[key] = value return report except Exception as e: logger.error(f"JSON验证失败: {str(e)}") return {"error": str(e), "raw_output": text[:200] + "..."} def _advanced_json_repair(self, text: str) -> str: """高级JSON修复算法""" try: # 1. 标准化引号 text = re.sub(r'(?<!\\)"', r'\"', text) # 2. 修复缺失的引号(针对中文冒号情况) def replace_colon(match): key = match.group(1).strip().strip('"\'') return f'"{key}":' text = re.sub(r'([^\s:]+)\s*:', replace_colon, text) # 3. 修复缺失的逗号 lines = [line.strip() for line in text.split('\n') if line.strip()] fixed_lines = [] for i in range(len(lines)): if i > 0 and lines[i].startswith(('"', "'")) and not lines[i - 1].endswith(('{', '[', ',', ':')): fixed_lines.append(',') fixed_lines.append(lines[i]) text = ' '.join(fixed_lines) # 4. 确保完整的JSON结构 if not text.strip().startswith("{"): text = "{" + text.strip() if not text.strip().endswith("}"): text = text.strip() + "}" # 5. 修复转义字符 text = text.replace('\\"', '"').replace("\\'", "'") return text except Exception as e: logger.warning(f"高级修复过程中出错: {str(e)}") return f'{{"error": "修复失败", "detail": "{str(e)}"}}' def _create_default_report(self, task_info: Dict, timestamp: str) -> Dict: """创建默认报告结构""" location = task_info.get("location", {}) return { "监测任务": task_info.get("task", "常规巡检"), "监测位置": { "经度": location.get("longitude", 0), "纬度": location.get("latitude", 0), "区域描述": location.get("description", "未知区域") }, "异常类型": task_info.get("anomaly", "无"), "严重程度": task_info.get("severity", "低"), "环境参数": { "能见度": task_info.get("visibility", "良好"), "风速": task_info.get("wind_speed", "0"), "光照": task_info.get("light", "白天正常") }, "设备状态": { "电池": task_info.get("battery", "100"), "信号强度": task_info.get("signal", "100"), "传感器": task_info.get("sensors", "正常") }, "详细描述": "自动生成失败,请人工检查", "建议措施": "立即进行人工复查", "时间戳": timestamp } def _emergency_report(self, task_info: Dict, error: str) -> Dict: """紧急模式报告""" logger.warning("启动紧急报告模式") default = self._create_default_report(task_info, datetime.now().isoformat()) default.update({ "系统状态": "紧急模式", "错误信息": error, "详细描述": "自动报告生成系统故障", "建议措施": "检查系统日志并联系技术支持" }) return default # 测试代码 if __name__ == "__main__": try: print("=" * 50) print("无人机报告生成系统 - 环境检查") print(f"CUDA可用: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"当前GPU: {torch.cuda.get_device_name(0)}") print(f"显存总量: {torch.cuda.get_device_properties(0).total_memory / 1024 ** 3:.2f}GB") print("=" * 50) generator = DroneReportGenerator() test_cases = [ { "task": "油田管道巡检", "location": {"longitude": 117.1215, "latitude": 36.6811, "description": "济南历城油田区域"}, "anomaly": "油管压力异常", "severity": "高", "visibility": "中等(夜间)", "wind_speed": "3.2", "light": "夜间飞行", "battery": "78", "signal": "92", "sensors": "红外正常,视觉受限" }, { "task": "风电场叶片检测", "location": {"longitude": 121.4737, "latitude": 31.2304, "description": "上海东海风电场"}, "anomaly": "叶片异常震动", "severity": "中", "visibility": "良好", "wind_speed": "8.5", "light": "白天正常", "battery": "65", "signal": "88", "sensors": "所有传感器正常" } ] for i, case in enumerate(test_cases, 1): print(f"\n=== 测试案例 {i}: {case['task']} ===") report = generator.generate_report(case) print("生成的报告:") print(json.dumps(report, indent=2, ensure_ascii=False)) except Exception as e: logger.error(f"测试失败: {str(e)}") 运行上述代码出现2025-07-05 19:34:25,919 - ERROR - 报告生成失败: ‘DroneReportGenerator’ object has no attribute ‘_process_output’ 2025-07-05 19:34:25,919 - ERROR - 测试失败: ‘DroneReportGenerator’ object has no attribute ‘_emergency_report’ 运行代码后出现上述错误,请修改代码并生成这些问题,请修改代码并生成
07-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值