Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models

本文研究了大型语言模型在多语言任务中的表现,发现翻译虽能提升英语为中心的LLM性能,但对文化相关任务效果有限。母语提示更能捕捉语言细节,提出发展强大的多语言LLM是关键。

本文是LLM系列文章,针对《Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models》的翻译。

翻译就是你所需要的吗?用大型语言模型求解多语言任务的研究

摘要

大型语言模型已经显示出强大的多语言能力;然而,由于训练语料库的不平衡,他们大多以英语为中心。现有的工作利用这一现象来提高他们在NLP任务中的多语言性能。在这项工作中,我们将评估从NLP任务扩展到真实的用户查询。我们发现,即使翻译成英语有助于提高以英语为中心的LLM的多语言NLP任务的性能,但它可能并不适用于所有情况。对于需要深入理解语言的文化相关任务,母语提示更具前景,因为它可以捕捉与文化和语言相关的细微差别。因此,我们主张更多地努力开发强大的多语言LLM,而不仅仅是以英语为中心的LLM。

1 引言

2 NLP任务的翻译

3 真实用户查询的翻译

4 一般性讨论

5 结论

在这项工作中,我们对不同多语言任务中的LLM进行了全面评估。这些任务包括传统的NLP挑战、真实用户查询和特定于区域性的任务。我们探索使用基于翻译的方法作为一种策略,以克服以英语为中心的LLM固有的局限性,从而促进理解。然而,我们发现,对于严重依赖于特定语言细微差别的任务,使用母语提示是一种更有效的方法。这种方法特别善于捕捉每种语言特有的微妙之处和复杂性。我们的研究结果表明,开发强大的多语

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值