Re-Search for The Truth Multi-round Retrieval-augmented Large Language Models are Strong Fake News

本文提出一种新颖的检索增强LLM框架,通过多轮检索策略从网络获取证据验证新闻真伪,提升假新闻检测的准确性和可解释性。

本文是LLM系列文章,针对《Re-Search for The Truth: Multi-round Retrieval-augmented Large
Language Models are Strong Fake News Detectors》的翻译。

重新寻找真相:多轮检索增强的大型语言模型是强大的假新闻检测器

摘要

假新闻的泛滥对政治、经济和整个社会产生了深远的影响。虽然假新闻检测方法被用来缓解这一问题,但它们主要取决于两个基本要素:证据的质量和相关性,以及判决预测机制的有效性。传统方法通常从维基百科等静态存储库中获取信息,但受到过时或不完整数据的限制,尤其是对于新兴或罕见的声明。以其卓越的推理和生成能力而闻名的大型语言模型(LLM)为假新闻检测引入了一个新的前沿。然而,与传统方法一样,基于LLM的解决方案也要克服陈旧和长尾知识的局限性。此外,检索增强LLM经常遇到低质量证据检索和上下文长度限制等问题。为了应对这些挑战,我们引入了一种新颖的、可检索的改进LLM框架——这是同类框架中第一个自动和战略性地从网络来源中提取关键证据用于索赔验证的框架。采用多轮检索策略,我们的框架确保获得足够的相关证据,从而提高性能。在三个真实世界数据集上进行的综合实验验证了该框架相对于现有方法的优势。重要的是,我们的模型不仅提供了准确的判决,而且还提供了人类可读的解释,以提高结果的可解释性。

1 引言

2 相关工作

3 方法

4 实验

5 结论

在本文中,

### Retrieval-Augmented Generation in Knowledge-Intensive NLP Tasks Implementation and Best Practices The method of retrieval-augmented generation (RAG) for knowledge-intensive natural language processing tasks aims to combine the strengths of dense vector representations with sparse exact match methods, thereby improving model performance on tasks that require access to external information not present during training[^1]. This approach ensures models can retrieve relevant documents or passages from a large corpus at inference time and generate responses conditioned on this retrieved context. #### Key Components of RAG Framework A typical implementation involves two main components: 1. **Retriever**: A component responsible for fetching potentially useful pieces of text based on input queries. 2. **Generator**: An encoder-decoder architecture like BART or T5 which generates outputs given both the query and retrieved contexts as inputs. This dual-stage process allows systems to leverage vast amounts of unstructured data without needing explicit retraining when new facts become available. #### Practical Steps for Implementing RAG Models To effectively implement such an architecture, one should consider several factors including but not limited to choosing appropriate pre-trained retrievers and generators fine-tuned specifically towards question answering or similar objectives where factual accuracy is paramount. Additionally, integrating these modules into existing pipelines requires careful consideration regarding latency constraints versus quality trade-offs especially under real-time applications scenarios. For instance, here's how you might set up a simple pipeline using Hugging Face Transformers library: ```python from transformers import RagTokenizer, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") def rag_pipeline(question): inputs = tokenizer([question], return_tensors="pt", truncation=True) generated_ids = model.generate(input_ids=inputs["input_ids"]) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return output ``` In practice, tuning hyperparameters associated with each stage separately could lead to better overall results compared to treating them monolithically due to their distinct roles within the system design. #### Best Practices When Working With RAG Systems When deploying RAG-based solutions, adhering to certain guidelines helps maximize effectiveness while minimizing potential pitfalls: - Ensure high-quality indexing over document collections used by the retriever part since poor recall directly impacts downstream generations negatively. - Regularly update underlying corpora so they remain current; stale resources may propagate outdated information through synthetic texts produced thereafter. - Monitor closely any changes made either upstream (e.g., modifications affecting source material accessibility) or inside your own infrastructure because alterations elsewhere often necessitate corresponding adjustments locally too. By following these recommendations alongside leveraging state-of-the-art techniques provided via frameworks like those mentioned earlier, developers stand well positioned to build robust conversational agents capable of delivering accurate answers across diverse domains requiring specialized domain expertise beyond what general-purpose pretrained models alone offer today. --related questions-- 1. How does multi-task learning compare against single-task approaches concerning adaptability? 2. What are some challenges faced when implementing keyword-based point cloud completion algorithms? 3. Can prompt engineering significantly influence outcomes in few-shot learning settings? 4. Are there specific industries benefiting most prominently from advancements in knowledge-intensive NLP technologies?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值