Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models

828 篇文章

已下架不支持订阅

本文研究了大型语言模型(LLM)在检索增强生成(RAG)中的鲁棒性,发现提示的微小变化可能导致生成不准确的答案。通过提出梯度引导提示扰动(GGPP)技术,评估了这种扰动对RAG的影响,揭示了RAG在某些情况下可能易受干扰。此外,还介绍了一种方法来检测和增强LLM的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models》的翻译。

基于大语言模型的检索增强生成中的提示扰动

摘要

随着大型语言模型在广泛领域的使用迅速增长,其稳健性变得越来越重要。检索增强生成(RAG)被认为是提高LLM文本生成可信度的一种手段。然而,基于RAG的LLM的输出如何受到略有不同的输入的影响还没有得到很好的研究。在这项工作中,我们发现,即使在提示中插入一个短前缀,也会导致生成远离事实正确答案的输出。我们通过引入一种名为梯度引导提示扰动(GGPP)的新优化技术,系统地评估了这些前缀对RAG的影响。GGPP在将基于RAG的LLM的输出引导到有针对性的错误答案方面实现了高成功率。它还可以处理提示中请求忽略无关上下文的指令。我们还利用LLM在有GGPP扰动和没有GGPP扰动的提示之间的神经元激活差异,提出了一种方法,通过对GGPP生成的提示触发的神经元激活进行高效检测器训练,提高基于RAG的LLM的鲁棒性。我们对开源LLM的评估证明了我们方法的有效性。

1 引言

2 相关工作

3 梯度引导的提示扰动

4 对抗性前缀的检测

5 实验

6 结论

本文开始研究基于RAG的LLM在提示扰动下的鲁棒性问题。我们给出了一种梯度引导的方法来干扰用户提

### Retrieval-Augmented Generation (RAG) in NLP #### Definition of RAG Retrieval-Augmented Generation combines the strengths of retrieval-based models with generative models to improve conversational systems' performance. Traditional retrieval methods excel at finding relevant information but lack flexibility when generating responses that require synthesis or creativity. Generative models can produce novel text but may suffer from hallucinations—generating content not grounded in factual knowledge. By integrating both approaches, RAG leverages external databases or corpora as a source of evidence during generation, ensuring outputs are more accurate and contextually appropriate while maintaining natural language fluency[^1]. #### Implementation Details The architecture typically consists of two main components: - **Retriever**: Responsible for fetching documents most pertinent to user queries using techniques like dense passage retrieval. ```python class Retriever: def __init__(self): pass def retrieve(self, query): # Implement document search logic here pass ``` - **Generator**: Utilizes retrieved contexts alongside input prompts to craft coherent replies via transformer architectures such as BART or T5. ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer class Generator: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") self.model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large") def generate(self, prompt, context): inputs = self.tokenizer(prompt + " " + context, return_tensors="pt", max_length=512, truncation=True) output_ids = self.model.generate(inputs["input_ids"]) response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) return response ``` To enhance traditional RAG further, Graph RAG introduces graph structures into the mix, allowing better representation of relationships between entities within stored knowledge bases compared to vector representations alone[^3]. This approach facilitates richer contextual understanding across diverse domains including healthcare, finance, etc., where interconnected data points play crucial roles. #### Use Cases One prominent application area lies in customer service automation through virtual assistants capable of providing precise answers based on vast amounts of structured/unstructured textual resources without losing personal touch[^4]. Another potential field is legal research assistance; lawyers could benefit greatly by having access to case law summaries generated dynamically according to specific needs rather than manually sifting through countless precedents. --related questions-- 1. How does Cross-Attention mechanism contribute to improving RAG's effectiveness? 2. What challenges might one encounter when implementing custom retrievers tailored towards specialized industries? 3. Can you provide examples illustrating how Graph RAG outperforms conventional RAG implementations regarding entity relationship handling? 4. In what ways has pre-training large-scale language models impacted advancements made within this domain over recent years?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值