Prevalence and prevention of large language model use in crowd work

828 篇文章

已下架不支持订阅

研究表明,大型语言模型(LLM)在众包工作中广泛应用,约占30%。通过禁止使用LLM和提高操作难度,使用率可降低约一半。LLM产生的文本质量高但同质化,可能影响研究的准确性,同时防止LLM使用可能与获取高质量响应相冲突。

本文是LLM系列文章,针对《Prevalence and prevention of large language model use in crowd work》的翻译。

众包工作中使用大型语言模型的流行率和预防

摘要

我们表明,大型语言模型(LLM)的使用在众包工作者中很普遍,有针对性的缓解策略可以显著减少但不能消除LLM的使用。在文本摘要任务中,没有以任何方式指导工人使用LLM,LLM使用的估计流行率约为30%,但通过要求工人不要使用LLM和提高使用成本(例如禁用复制粘贴),LLM的使用率降低了约一半。二次分析进一步深入了解了LLM的使用及其预防:LLM的应用产生了高质量但同质的反应,这可能会损害与人类(而不是模型)行为有关的研究,并降低用众包数据训练的未来模型。同时,防止LLM的使用可能与获得高质量的响应不一致;例如,当要求员工不要使用LLM时,摘要中包含的携带基本信息的关键词较少。我们的估计可能会随着LLM的受欢迎程度或功能的增加以及其使用规范的变化而变化。然而,理解基于LLM的工具和用户的共同进化是保持众包研究有效性的关键,我们在广泛采用之前提供了一

已下架不支持订阅

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值