Explainability for Large Language Models: A Survey

828 篇文章

已下架不支持订阅

本文深入探讨大型语言模型的可解释性,分析了基于微调和提示的训练范式的解释方法,讨论了评估解释的度量、挑战及如何改进模型性能。

本文是LLM系列文章,针对《Explainability for Large Language Models: A Survey》的翻译。

摘要

大型语言模型(llm)在自然语言处理方面已经展示了令人印象深刻的能力。然而,它们的内部机制仍然不清楚,这种透明度的缺乏给下游应用带来了不必要的风险。因此,理解和解释这些模型对于阐明它们的行为、局限性和社会影响至关重要。在本文中,我们介绍了可解释性技术的分类,并提供了用于解释基于Transformer的语言模型的方法的结构化概述。我们根据LLM的训练范式对技术进行分类:传统的基于微调的范式和基于提示的范式。对于每个范式,我们总结了生成个体预测的局部解释和整体模型知识的全局解释的目标和主要方法。我们还讨论了用于评估生成的解释的度量,并讨论了如何利用解释来调试模型和提高性能。最后,与传统的机器学习模型相比,我们研究了LLM时代解释技术的关键挑战和新兴机遇。

1 引言

2 LLM的训练范式

3 传统微调范式的解释

4 提示范式的解释

5 评估的解释

6 研究挑战

7 结论

在本文中,我们对LLM的可解释性技术进行了全面概述。我们总结了基于模型训练范式的局部和全局解释方法。我们还讨论了使用解释来改进模型、评估和关键挑战。未来的主要发展选择

### 关于多模态大模型的研究概述 多模态大语言模型(Multimodal Large Language Models, MLLMs)近年来成为人工智能领域的重要研究方向之一。这些模型能够处理多种数据形式,如文本、图像、音频和其他传感器输入,从而实现更加复杂的任务解决能力[^1]。 #### 自动驾驶中的多模态大语言模型 在自动驾驶场景下,MLLMs 的应用尤为突出。它们可以融合来自摄像头、激光雷达和毫米波雷达等多种传感器的数据,提供全面的环境感知能力。一篇重要的综述文章《A Survey on Multimodal Large Language Models for Autonomous Driving》详细探讨了这一领域的进展及其挑战[^2]。该文章不仅涵盖了自动驾驶技术的发展历程,还分析了多模态语言模型如何逐步融入到自动驾驶系统中,并提出了未来可能的研究方向。 #### 数据集与基准测试 为了推动多模态大语言模型的进步,研究人员创建了许多公开可用的数据集和评估标准。例如,在自动驾驶领域,特定的任务驱动型数据集被用来验证模型的有效性和鲁棒性。这些资源对于促进学术界和工业界的协作至关重要[^3]。 #### 跨语言支持的重要性 尽管目前大多数先进的大型语言模型主要专注于单一语言(通常是英语),但也有不少努力旨在构建具备跨语言功能的版本。比如 VisCPM 和 Qwen-VL 这样的项目展示了通过精心设计的训练策略来增强模型对不同自然语言的支持程度的可能性。 ```python # 示例代码展示如何加载一个多模态预训练模型并执行推理操作 from transformers import AutoProcessor, CLIPModel model_name = "openai/clip-vit-base-patch32" processor = AutoProcessor.from_pretrained(model_name) model = CLIPModel.from_pretrained(model_name) image_url = "https://example.com/sample_image.jpg" text_input = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text_input, images=image_url, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution over texts print(probs) ``` 上述代码片段演示了一个简单的例子,说明如何利用现有的开源工具包加载预先训练好的多模态模型来进行基本推断。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值