Nature论文解读:用于改善加权生物网络信噪比的网络增强方法

本文提出网络增强(Network Enhancement, NE)方法,旨在改善无向加权生物网络的信噪比,通过双随机矩阵算子诱导稀疏性,消除弱边,增强实际连接。NE在基因交互、Hi-C交互和蝴蝶物种相似性网络中展现出增强效果,提高下游分析性能。" 122268119,8667811,Windows 10上安装与使用fmriprep指南,"['图像处理', 'Docker', '数据分析']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640

640?


在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。


在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。


点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。

这是 PaperDaily 的第 95 篇文章

本期推荐的论文笔记来自 PaperWeekly 社区用户 @xuehansheng。本文是斯坦福大学 Bo Wang 的又一篇大作,即将发表于 Nature Communications


本文提出一种网络增强(Network Enhancement)方法,即一种用于改善无向加权网络的信噪比的方法。NE 使用双随机矩阵算子来诱导稀疏性,并提供封闭形式的解决方案,增加输入网络的频谱本征。因此,NE 可消除弱边缘,增强实际连接,并带来更好的下游性能。

如果你对本文工作感兴趣,点击底部阅读原文即可查看原论文。

关于作者:薛寒生,澳大利亚国立大学博士生,研究方向为人工智能与计算生物学。

■ 论文 | Network Enhancement: a general method to denoise weighted biological networks

■ 链接 | https://www.paperweekly.site/papers/2152

■ 作者 | Bo Wang / Armin Pourshafeie / Marinka Zitnik / Junjie Zhu / Carlos D. Bus

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值