在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考。
在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果。
点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐。
这是 PaperDaily 的第 15 篇文章本期推荐的是 NVIDIA 投稿 ICLR 2018 的新作 Progressive Growing GANs,论文提出了一种以渐进增大的方式更稳定地训练 GAN,实现了前所未有的高分辨率图像生成。
PaperWeekly 社区用户 @Gapeng 不仅结合 NVIDIA 官方放出的 Lasagna 代码对论文进行了详细解读,还将基于 PyTorch 对论文进行复现。
如果你对本文工作感兴趣,点击底部的阅读原文即可查看原论文。
关于作者:洪佳鹏,北京大学硕士生,研究方向为生成式对抗网络。
■ 论文 | Progressive Growing of GANs for Improved Quality, Stability, and Variation
■ 链接 | http://www.paperweekly.site/papers/1008
■ 作者 | Gapeng
今天要介绍的文章是 NVIDIA 投稿 ICLR 2018 的一篇文章,Progressive Growing of GANs for Improved Quality, Stability, and Variation[1],姑且称它为 PG-GAN。
从行文可以看出文章是临时赶出来的,毕竟这么大的实验,用 P100 都要跑 20 天,更不用说调参时间了,不过人家在 NVIDIA,不缺卡。作者放出了基于 Lasagna 的代码,今天我也会简单解读一下代码。另外,我也在用 PyTorch 做复现。
在 PG-GAN 出来以前,训练高分辨率图像生成的 GAN 方法主要就是 LAPGAN[2] 和 BEGAN[6]。后者主要是针对人脸的,生成的人脸逼真而不会是鬼脸。
这里也提一下,生成鬼脸的原因是 Discriminator 不再更新,它不能再给予 Generator 其他指导,Generator 找到了一种骗过 Discriminator 的方法,也就是生成鬼脸,而且很大可能会 mode collapse。
下图是我用 PyTorch 做的 BEGAN 复现,当时没有跑很高的分辨率,但是效果确实比其他 GAN 好基本没有鬼脸。
PG-GAN 能够稳定地训练生成高分辨率的 GAN。我们来看一下 PG-GAN 跟别的 GAN 不同在哪里。
1. 训练方式