105. Construct Binary Tree from Preorder and Inorder Traversal
题目描述
从二叉树的前序和中序遍历中恢复原来的二叉树。
从先序遍历中可以很轻松的找到根节点,从中序遍历中可以把左右子树分割出来。
所以这道题目使用DFS再合适不过了。
Given preorder and inorder traversal of a tree, construct the binary tree.
Note: You may assume that duplicates do not exist in the tree.
一般是假设不存在重复项,因为在递归建立子树的时候需要根据值来找到索引。重复的话,就无法找到正确的索引而使建立的树错误。
代码实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int> preorder, vector<int> inorder) {
int insize = inorder.size();
if(!insize) return NULL;
TreeNode* root = new TreeNode(preorder[0]);
int i = 0;
for(i = 0; i < insize; i++)
if(inorder[i] == preorder[0]) break;
if(i)
root->left = buildTree(vector<int>(preorder.begin()+1, preorder.begin()+i+1), vector<int>(inorder.begin(), inorder.begin()+i));
else root->left = NULL;
if(i+1 < insize) {
root->right = buildTree(vector<int>(preorder.begin() + i + 1, preorder.end()), vector<int>(inorder.begin()+i+1, inorder.end()));
}
else root->right = NULL;
return root;
}
};
106. Construct Binary Tree from Inorder and Postorder Traversal
题目描述
给中序和后序,给出二叉树。
Given inorder and postorder traversal of a tree, construct the binary tree.
和上一题没有区别。
代码实现
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int> inorder, vector<int> postorder) {
int len = inorder.size(), ind = -1;
if(!len) return NULL;
TreeNode *root = new TreeNode(postorder[len-1]);
for(ind = 0; ind < len; ind++)
if(inorder[ind] == postorder[len - 1]) break;
root->left = ind?buildTree(vector<int>(inorder.begin(), inorder.begin()+ind), vector<int>(postorder.begin(), postorder.begin()+ind)):NULL;
root->right = ind+1<len?buildTree(vector<int>(inorder.begin()+ind+1, inorder.end()), vector<int>(postorder.begin()+ind, postorder.begin()+len)):NULL;
return root;
}
};