IMAGE REGISTRATION

图像配准主要涉及基于区域和特征的分类,包括多视图、多时态和多模态分析。关键步骤包括特征检测、匹配、变换模型估算和图像重采样。区域特征如高对比度闭合边界通过分割方法检测,而点特征如角点和线特征用于模型匹配。特征选择对任务至关重要,且必须具备抵抗错误检测和图像退化的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Classification
    Nature: area-based and feature-based.

Different viewpoints (multiview analysis): image from different viewpoints, 2D or 3D representation like remote sensing and stereo vision.

Different times (multitemporal analysis): images at different times, in consecutive acquisitions. Automatic change detection for security monitoring, motion tracking.

Different sensors (multimodal analysis): images from different sensors, obtained from different source to represent more details. Remote sensing with better resolution. Radar images independent of cloud cover.

Scene to model registration: images of a scene and a model of the scene are registered. To compare similar images. Target template matching with real-time images.

  • Steps

    1. feature detection: edge, contour, line intersection, corners, closed-boundary. Called control points(CP).
    2. feature matching: various feature descriptors and similarity measures along spatial relationships.
    3. transform model estimation: mapping function computed by means of established feature correspondence.
    4. image resampling and transformation: sensed image transformed by means of mapping functions. Else is computed by interpolation techniques.
  • feature detection
    feature choice is important according to task.
    robust to incorrect feature detection or image degradations.

    • area-based methods: omit this step.
    • feature-based methods: significant regions、lines(region boundaries、coastlines)、points(region corners、line intersections)

    region features(high contrast closed-boundary. Representing by gravity. Detected by segmentation methods.)

    N.R. Pal, S.K. Pal, A review on image segmentation techniques, Pattern Recognition 26 (1993) 1277–1294

    A. Goshtasby, G.C. Stockman, C.V. Page, A region-based approach to digital image registration with subpixel accuracy, IEEE Transactions on Geoscience and Remote Sensing 24 (1986)390–399.

    A. Noble, Finding corners, Image and Vision Computing 6 (1988) 121–128.

    As for line feature, line segmentation, object contours、coastline、roads、structure.

    Y.C. Hsieh, D.M. McKeown, F.P. Perlant, Performance evaluation of scene registration and stereo matching for cartographic feature extraction, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992) 214–237

    J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (1986) 679–698.

    Point features: line intersections、roads crossing、centroids、oil、gas pads.

    B. Likar, F. Pernus, Automatic extraction of corresponding points for the registration of medical images, Medical Physics 26 (1999) 1678–1686.

    D. Bhattacharya, S. Sinha, Invariance of stereo images via theory of complex moments, Pattern Recognition 30 (1997) 1373–1386.

    T.M. Lehmann, A two stage algorithm for model-based registration of medical images, Proceedings of the Interantional Conference on Pattern Recognition ICPR’98, Brisbane, Australia, 1998, pp. 344–352.(corner)

    P. Hellier, C. Barillot, Coupling dense and landmark-based approaches for non rigid registration, IRISA research report, PI 1368:30, France, 2000.

    All about feature-based methods are effective when the objects are detectable.

  • feature matching

    1. area-based methods: correlation-like methods or template matching. Combining the detection step with matching part. Deformation maybe complex to recover.

      L.M.G. Fonseca, B.S. Manjunath, Registration techniques for multisensor remotely sensed imagery, Photogrammetric Engineering and Remote Sensing 62 (1996) 1049–1056.

      W.K. Pratt, Correlation techniques of image registration, IEEETransactions on Aerospace and Electronic Systems 10 (1974)353–358.

    2. feature-based methods:

  • transform model estimation
    reserve useful information and keep change.

  • image resampling and transformation
    trade-off between accuracy and computational complexity. The nearest-neighbor or bilinear interpolation are sufficient.

  • To be continued……

Image registration(图像配准)是一种将不同图像或同一图像的不同部分进行对齐和匹配的技术。通过图像配准,我们可以将多个图像或图像的不同视角或时间点的图像进行叠加,以便进行比较、分析和融合。图像配准在许多领域中都有广泛的应用,包括医学影像、遥感图像、计算机视觉和机器人导航等。 根据引用中的"图像配准综述",图像配准的目标是找到不同图像之间的几何变换关系,以使它们在空间上对齐。这种变换可以包括平移、旋转、尺度变换和弯曲变换等。图像配准的主要挑战在于克服图像之间的形变、旋转和尺度差异等。 引用中的"Image Registration Techniques A Survey"提供了对图像配准技术的详细调查。它介绍了许多常用的图像配准方法,包括基于特征的方法、基于区域的方法、基于深度学习的方法等。这些方法使用不同的算法和数学模型来实现图像配准的目标。 另外,引用中的"Deep Learning in Medical Image Registration: A Survey"探讨了在医学影像配准中应用深度学习的最新研究。深度学习技术通过神经网络的训练和学习能够实现高精度的图像配准,使得医学影像的分析和诊断更加准确和可靠。 总而言之,图像配准是一种将不同图像进行对齐和匹配的技术,它在各个领域都有重要的应用。不同的图像配准方法和技术可以根据具体的需求选择和应用,包括基于特征、区域和深度学习的方法。图像配准的发展为我们提供了更多的工具和技术来分析和理解图像数据。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [图像配准综述](https://blog.youkuaiyun.com/weixin_43156127/article/details/121215408)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值