UVa 202 Repeating Decimals

本文介绍了一个程序设计问题:如何通过编程确定任意分数的循环小数部分。文章提供了详细的算法实现过程,包括如何模拟手工除法来找到精确的商,并识别循环开始的位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Repeating Decimals 

The decimal expansion of the fraction 1/33 is tex2html_wrap_inline43 , where the tex2html_wrap_inline45 is used to indicate that the cycle 03 repeats indefinitely with no intervening digits. In fact, the decimal expansion of every rational number (fraction) has a repeating cycle as opposed to decimal expansions of irrational numbers, which have no such repeating cycles.

Examples of decimal expansions of rational numbers and their repeating cycles are shown below. Here, we use parentheses to enclose the repeating cycle rather than place a bar over the cycle.

tabular23

Write a program that reads numerators and denominators of fractions and determines their repeating cycles.

For the purposes of this problem, define a repeating cycle of a fraction to be the first minimal length string of digits to the right of the decimal that repeats indefinitely with no intervening digits. Thus for example, the repeating cycle of the fraction 1/250 is 0, which begins at position 4 (as opposed to 0 which begins at positions 1 or 2 and as opposed to 00 which begins at positions 1 or 4).

Input

Each line of the input file consists of an integer numerator, which is nonnegative, followed by an integer denominator, which is positive. None of the input integers exceeds 3000. End-of-file indicates the end of input.

Output

For each line of input, print the fraction, its decimal expansion through the first occurrence of the cycle to the right of the decimal or 50 decimal places (whichever comes first), and the length of the entire repeating cycle.

In writing the decimal expansion, enclose the repeating cycle in parentheses when possible. If the entire repeating cycle does not occur within the first 50 places, place a left parenthesis where the cycle begins - it will begin within the first 50 places - and place ``...)" after the 50th digit.

Print a blank line after every test case.

Sample Input

76 25
5 43
1 397

Sample Output

76/25 = 3.04(0)
   1 = number of digits in repeating cycle

5/43 = 0.(116279069767441860465)
   21 = number of digits in repeating cycle

1/397 = 0.(00251889168765743073047858942065491183879093198992...)
   99 = number of digits in repeating cycle

#include "stdio.h"
#include "string.h"

int decimal[10000];
int num[10000];


int main()
{
	int n, d;
	int num_count = 0;
	while(scanf("%d", &n) != EOF)
	{
		scanf("%d", &d);
		num_count++;
		/*
		if(num_count > 1)
			printf("\n");
		*/if(n == 0)
		{
			printf("%d/%d = 0.(0)\n", n, d);
			printf("   1 = number of digits in repeating cycle\n\n");
		}		
		else if(n % d == 0)
		{
			printf("%d/%d = %d.(0)\n", n, d,n/d);
			printf("   1 = number of digits in repeating cycle\n\n");
		}
		else
		{
			memset(decimal, 0, sizeof(decimal));
			memset(num, 0, sizeof(num));
			int count = 0;
			int flag = 0;
			int end = 0;
			int begin = 0;
			int k = n;
			if(k > d)
				k = k % d;
			k = k * 10;
			while(1)
			{
				while(k < d)
				{
					decimal[count] = 0;
					num[count] = k;
					for(int i = count - 1; i >= 0; i--)
                                	{
                                        	if(num[count] == num[i])
                                        	{
                                                	flag = 1;
                                                	begin = i;
                                                	end = count -1;
                                  //              	printf("begin: %d, end: %d\n", begin, end);
                                                	break;
                                        	}
                                	}	
					count++;
					if(flag)
						break;
					k = k * 10;
				}
				if(flag)
					break;
				decimal[count] = k / d;
				num[count] = k;
				for(int i = count - 1; i >= 0; i--)
				{
					if(num[count] == num[i])
					{
						flag = 1;
						begin = i;
						end = count -1;
				//		printf("begin: %d, end: %d\n", begin, end);
						break;
					}
				}
				count++;
				k = k % d * 10;
				if(k == 0)
				{
					decimal[count] = 0;
					num[count] = 0;
					flag = 1;
					begin = count;
					end = count;
					count++;
				//	printf("begin: %d, end: %d\n", begin, end);
				}
				if(flag)
					break;
			}
			printf("%d/%d = %d.", n, d, n/d);
			int i;
			for(i = 0; i < 50 && i <= end; i++)
			{
				if(i == begin)
					printf("(");
				printf("%d", decimal[i]);
				if(i == end)
					printf(")");
			}
			if(i == 50 && i <= end)
				printf("...)");	
			printf("\n");
			printf("   %d = number of digits in repeating cycle\n\n", end-begin+1);	
		}
	}
	return 0;
}

方法不是最佳,一开始摸不着头脑,后来发现一步步模拟手工做除法的过程就可以得到精确的商,然后注意到只要有在某一步中有重复的被除数出现,那么就会有循环。

另外,输出格式Print a blank line after every test case.是大坑!和前一篇正好相反
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值