【原创】【区间上的贪心 第一篇】Poj 1328 Radar Installation

本文探讨了一个经典的区间覆盖问题,即在平面直角坐标系中寻找最少数量的点,以覆盖所有给定的点,每个点周围形成半径为d的圆。文章通过分析问题本质,并采用贪心策略解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

区间上的各种贪心

不多说,看题。

选点覆盖区间

Radar Installation POJ 1328

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
这里写图片描述
Figure A Sample Input of Radar Installations
(图片有问题!!)

Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. “-1” installation means no solution for that case.
Sample Input
3 2
1 2
-3 1
2 1

1 2
0 2

0 0
Sample Output
Case 1: 2
Case 2: 1

题意

平面直角坐标系上有n个点,求在x轴上找尽量少的点,以这些点为圆心画一个半径为d的圆,使得给定的点都在画出来的圆里。如果不能输出-1。

分析

我的思路是由最后一句话“如果不能输出-1”启发的。
怎么会不能呢?因为x轴上所有点到某点的距离都超过了d。
也就是说,以这个点画一个半径为d的圆,它与x轴无交点。
如图:
这里写图片描述
我们知道圆心和半径,可以求出圆的方程:(x-a)²+(y-b)²=d²,
它与x轴即y=0无交点,则说明联立圆和y=0,无解。
这里写图片描述
回到图形,
这里写图片描述
如果想要在x轴上选点画圆覆盖(a,b),那么这个点的横坐标就一定在[a-d²+b²,a+d²-b²]区间内。

因此,这道题就变成了在数轴上选最少的点,覆盖给定线段。
这就类似于整数区间了。

假设数轴上有很多段区间,我们把它们从数轴上分离出来。
这里写图片描述
把一维拓展到二维,就很直观了,取点的过程可以理解为画一条铅垂线来割这些线段。
让我们先来割第一条线段。随便画几条线。
这里写图片描述
我们可以直观地感受到,从靠第一条线段的地方割,越容易割到其他的线,也就是说有更多的线段不用多浪费线去割。
为什么呢?
图上可以看到,其他的线段都比第一条线段“靠右”,因此,选择割点的时候,如果想要尽量多覆盖,割点也要尽量“靠右”。
怎么用程序实现靠左和靠右呢?我们可以将线段以右端点排序,就可以达到如上效果。

代码

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;

void Read(int &p)
{
    p=0;
    int f=1;
    char c=getchar();
    while(c<'0'||c>'9') 
        f=(c=='-')?-1:1,c=getchar();
    while(c>='0'&&c<='9')
        p=p*10+c-'0',c=getchar();
    p*=f;
}

struct point
{
    double l,r;
    bool operator < (const point &x) const 
    {
        if(r!=x.r) return r<x.r;
        return l<x.l;
    }
}p[1234];

int n,x,y,d,sp;
double delta;

int main()
{
    while(1)
    {
        Read(n); Read(d);
        if(!n&&!d) break;
        bool f=1;
        for(int i=1;i<=n;i++)
        {
            Read(x); Read(y);
            delta=1.0*d*d-1.0*y*y;
            if(d>=y)
                p[i].l=x-sqrt(delta),
                p[i].r=x+sqrt(delta);
            else f=0;
        }

        if(!f) 
        {
            printf("Case %d: -1\n",++sp);
            continue;
        }

        sort(p+1,p+1+n);
        double now=p[1].r;
        int ans=1;
        for(int i=2;i<=n;i++)
            if(p[i].l>now)
                ans++,now=p[i].r;
        printf("Case %d: %d\n",++sp,ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值