大名鼎鼎的八皇后问题就不重复题目了,直接讲思路。
- 列的方向即深度的方向,沿着列逐层搜索
- 将4个条件转化为布尔数组,其中“对角线”的条件可以对应平面坐标系中直线的表达式(和或差不变)
- 如果这层还没搜索过,那就开始搜索;如果这个点可以占用,那就占用,并把不能放棋子的坐标全部标记
- 别忘了在上一层return之后,把所有标记复原
题解
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n;
int row_visited[14];
int x_is_avaliable[14];
int y_is_avaliable[14];
int left_cross_is_avaliable[66]; // x+y = ?
int right_cross_is_avaliable[66]; // x-y = ?
int which_column[14]; // result
int solutions = 0;
void init(){
memset(row_visited, 0, sizeof(row_visited));
memset(which_column, 0, sizeof(which_column));
memset(x_is_avaliable, 1, sizeof(x_is_avaliable));
memset(y_is_avaliable, 1, sizeof(y_is_avaliable));
memset(left_cross_is_avaliable, 1, sizeof(left_cross_is_avaliable));
memset(right_cross_is_avaliable, 1, sizeof(right_cross_is_avaliable));
}
void dfs(int row_depth){
if(row_depth == n+1){
solutions++;
// if(solutions <= 3){
for(int i = 1; i < row_depth; i++){
cout<<which_column[i]<<" ";
}
cout<<endl;
// }
return;
}
for(int i = 1; i <= n; i++){
// i is column
if(row_visited[row_depth] == 0){
row_visited[row_depth] = 1;
if(x_is_avaliable[i] && y_is_avaliable[row_depth] && left_cross_is_avaliable[i+row_depth] && right_cross_is_avaliable[i-row_depth+13]){
// i-row+13, prevent negative
x_is_avaliable[i] = 0;
y_is_avaliable[row_depth] = 0;
left_cross_is_avaliable[i+row_depth] = 0;
right_cross_is_avaliable[i-row_depth+13] = 0;
which_column[row_depth] = i;
dfs(row_depth+1);
which_column[row_depth] = 0;
x_is_avaliable[i] = 1;
y_is_avaliable[row_depth] = 1;
left_cross_is_avaliable[i+row_depth] = 1;
right_cross_is_avaliable[i-row_depth+13] = 1;
}
row_visited[row_depth] = 0;
}
}
}
int main(){
init();
cin>>n;
dfs(1);
cout<<solutions;
return 0;
}
示例
输入 6
输出:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
5 3 1 6 4 2
4