阶乘长度模板!!
http://acm.hdu.edu.cn/showproblem.php?pid=1018
Big Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 12440 Accepted Submission(s): 5558
Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10
7 on each line.
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
Sample Input
2 10 20
Sample Output
7 19
- #include<iostream>
- #include <cmath>
- using namespace std;
- int normal(double n)
- {
- double x=0;
- while(n)
- {
- x +=log10(n);
- n--;
- }
- return (int)x+1;
- }
- long stirling(double n)
- {
- long x=0;
- if( n ==1 )
- x = 1;
- else
- {
- x = (long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );
- }
- return x;
- }
- int main()
- {
- int n;
- cin>>n;
- while(n--)
- {
- int x;
- cin>>x;
- cout<<stirling(x)<<endl;
- }
- return 0;
- }
本文介绍了一个计算大整数阶乘长度的问题,通过两种方法实现:一种是直接计算法,另一种是斯特林公式近似法。文章提供了一段C++代码示例,用于计算不同整数阶乘的位数。
2262

被折叠的 条评论
为什么被折叠?



