Estimator vs Keras (转)

EstimatorsAPI与KerasAPI对比
本文探讨了TensorFlow中EstimatorsAPI与KerasAPI的区别。EstimatorsAPI适用于分布式训练,可在多服务器上进行,而KerasAPI则不具备此功能。Estimators提供了预置模型,简化了模型构建过程,并且易于与TensorBoard等TensorFlow工具集成。
部署运行你感兴趣的模型镜像

" The Estimators API is used for training models for distributed environments. This targets industry use cases such as distributed training on large datasets that can export a model for production."

So both the Estimator API and Keras API provides a high-level API over low-level core Tensorflow API, and you can use either to train your model. But in most cases, if you are working with Tensorflow, you'd want to use the Estimators API for the reasons listed below.

Distribution

You can conduct distributed training across multiple servers with the Estimators API, but not with Keras API.

Pre-made Estimator

Whilst Keras provides abstractions that makes building your models easier, you still have to write code to build your model. With Estimators, Tensorflow provides Pre-made Estimators, which are models which you can use straight away, simply by plugging in the hyperparameters.

Pre-made Estimators are similar to how you'd work with scikit-learn. For example, the tf.estimator.LinearRegressor from Tensorflow is similar to the sklearn.linear_model.LinearRegression from scikit-learn.

Integration with Other Tensorflow Tools

Tensorflow provides a vistualzation tool called TensorBoard that helps you visualize your graph and statistics. By using an Estimator, you can easily save summaries to be visualized with Tensorboard.

Converting Keras Model to Estimator

To migrate a Keras model to an Estimator, use the tf.keras.estimator.model_to_estimator method

 

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值