系列文章目录
注意力提示
本博客标签label:sec_attention-cues
感谢读者对本书的关注,因为读者的注意力是一种稀缺的资源:此刻读者正在阅读本书(而忽略了其他的书),因此读者的注意力是用机会成本(与金钱类似)来支付的。为了确保读者现在投入的注意力是值得的,作者们尽全力(全部的注意力)创作一本好书。
自经济学研究稀缺资源分配以来,人们正处在“注意力经济”时代,即人类的注意力被视为可以交换的、有限的、有价值的且稀缺的商品。许多商业模式也被开发出来去利用这一点:在音乐或视频流媒体服务上,人们要么消耗注意力在广告上,要么付钱来隐藏广告;为了在网络游戏世界的成长,人们要么消耗注意力在游戏战斗中,从而帮助吸引新的玩家,要么付钱立即变得强大。总之,注意力不是免费的。
注意力是稀缺的,而环境中的干扰注意力的信息却并不少。比如人类的视觉神经系统大约每秒收到 1 0 8 10^8 108位的信息,这远远超过了大脑能够完全处理的水平。幸运的是,人类的祖先已经从经验(也称为数据)中认识到“并非感官的所有输入都是一样的”。在整个人类历史中,这种只将注意力引向感兴趣的一小部分信息的能力,使人类的大脑能够更明智地分配资源来生存、成长和社交,例如发现天敌、找寻食物和伴侣。
生物学中的注意力提示
注意力是如何应用于视觉世界中的呢?这要从当今十分普及的双组件(two-component)的框架开始讲起:这个框架的出现可以追溯到19世纪90年代的威廉·詹姆斯,他被认为是“美国心理学之父”。在这个框架中,受试者基于非自主性提示和自主性提示有选择地引导注意力的焦点。非自主性提示是基于环境中物体的突出性和易见性。
想象一下,假如我们面前有五个物品:一份报纸、一篇研究论文、一杯咖啡、一本笔记本和一本书,就像下图一样。
所有纸制品都是黑白印刷的,但咖啡杯是红色的。换句话说,这个咖啡杯在这种视觉环境中是突出和显眼的,不由自主地引起人们的注意。所以我们会把视力最敏锐的地方放到咖啡上,如下图所示。
图片标签:
fig_eye-coffee
喝咖啡后,我们会变得兴奋并想读书,所以转过头,重新聚焦眼睛,然后看看书,就像下图中描述那样。
与上图中由于突出性导致的选择不同,此时选择书是受到了认知和意识的控制,因此注意力在基于自主性提示去辅助选择时将更为谨慎。受试者的主观意愿推动,选择的力量也就更强大。
图片标签:
fig_eye-book
查询、键和值
自主性的与非自主性的注意力提示解释了人类的注意力的方式,下面来看看如何通过这两种注意力提示,用神经网络来设计注意力机制的框架,首先,考虑一个相对简单的状况,即只使用非自主性提示。要想将选择偏向于感官输入,则可以简单地使用参数化的全连接层,甚至是非参数化的最大汇聚层或平均汇聚层。
因此,“是否包含自主性提示”将注意力机制与全连接层或汇聚层区别开来。在注意力机制的背景下,自主性提示被称为查询(query)。给定任何查询,注意力机制通过注意力汇聚(attention pooling)将选择引导至感官输入(sensory inputs,例如中间特征表示)。在注意力机制中,这些感官输入被称为值(value)。更通俗的解释,每个值都与一个键(key)配对,这可以想象为感官输入的非自主提示。如 :numref:fig_qkv
所示,可以通过设计注意力汇聚的方式,便于给定的查询(自主性提示)与键(非自主性提示)进行匹配,这将引导得出最匹配的值(感官输入)。
注意力机制框架如下图所示。
🏷
fig_qkv
鉴于上面所提框架在 :numref:fig_qkv
中的主导地位,因此这个框架下的模型将成为本章的中心。然而,注意力机制的设计有许多替代方案。例如可以设计一个不可微的注意力模型,该模型可以使用强化学习方法 :cite:Mnih.Heess.Graves.ea.2014
进行训练。
注意力的可视化
平均汇聚层可以被视为输入的加权平均值,其中各输入的权重是一样的。
实际上,注意力汇聚得到的是加权平均的总和值,其中权重是在给定的查询和不同的键之间计算得出的。