背景
RSA加密算法是公钥密码最著名的算法之一,是由MIT三位(Ron Rivest, Adi Shamir, Len Adleman)提出的,也就以三位的名字首字母命名。
该算法的理论基础是“大数分解和素数检测“,如果说有一天,大数分解和素数检测的数学理论被证明可以简单解决,那么RSA算法的加密将没有任何意义。有提出说量子计算机的出现可以大大提高RSA的破解效率。下面我们将简单学习RSA加密算法的基本知识。
算法描述
RSA算法使用平方运算,明文以分组为单位进行加密,每个分组的二进制值小于n,即分组的大小必须小于等于log2(n)+1位(通常n的大小为1024位二进制数或309为十进制数,即n<2^1024)。对明文分组M和密文分组C,加密解密过程如下:
加密:
![]()
解密:
收发双方均已知n,发送方已知e,只有接收方已知d,因此RSA加密算法的公钥PU为{n,e},私钥PR为{n,d}。
d,e,n应满足如下条件:
- 可以找到e,d,n,使得对所有M< n,有
;
- 对所有M< n,计算M^e和C^e是比较容易的;
- 由e,n预