val ponStatus = df1.select(explode("ponStatus")).toDF("allponStatus")valponStatus1=ponStatus.select("ponStatus")).toDF("allponStatus")
val ponStatus1 = ponStatus.select("ponStatus")).toDF("allponStatus")valponStatus1=ponStatus.select(“allponStatus.Time” as “Time”,
$“allponStatus.temperature” as “temperature”,
$“allponStatus.voltage” as “voltage”,
$“allponStatus.current” as “current”,
$“allponStatus.ponstatus” as “ponstatus”,
$“allponStatus.txbyte” as “txbyte”,
$“allponStatus.rxbyte” as “rxbyte”,
$“allponStatus.txpkts” as “txpkts”,
$“allponStatus.rxpkts” as “rxpkts”,
$“allponStatus.FECErr” as “FECErr”,
$“allponStatus.dropkts” as “dropkts”)
ponStatus1.createOrReplaceTempView(“ponStatus”)
spark sql解析json文件的数组
最新推荐文章于 2025-06-16 19:42:50 发布
该博客介绍了如何使用Spark SQL解析包含数组的JSON文件,通过`explode`函数拆分`ponStatus`字段,然后选择并重命名相关的时间、温度、电压等关键指标,最后将结果保存为临时视图`ponStatus`。
AI助手已提取文章相关产品:
您可能感兴趣的与本文相关内容
3311

被折叠的 条评论
为什么被折叠?



