Personal Rank算法的原理及实现

本文详细介绍了PageRank算法的演变,特别是主题敏感的PersonalRank方法,用于在二分图中进行个性化推荐。通过Python实现PersonalRank的三种不同版本,包括迭代游走、矩阵运算和稀疏矩阵运算,比较了它们的效率和准确性。实验结果显示,矩阵运算和稀疏矩阵运算在时间和结果上表现更优,适用于大规模网络。此外,还展示了在战略性新兴产业推荐高校的实例,验证了算法的实用性。

1.简介

PageRank[1]是Google创始人拉里·佩奇和谢尔盖·布林于1997提出的用于客观评价网页的重要度的方法,最初的PageRank算法是主题无关的,它不依赖于任何特定的搜索查询。为了得到主题相关的搜索结果,Haveliwala提出主题敏感的PageRank方法,称为PersonalRank[2],该方法用于在二分图中为用户进行推荐。二分图又称为二部图,是图论中的一种特殊模型,设G=(V,E) 是一个图,如果顶点V可分割为两个互不相交的子集(A, B),并且图中的每条边(i, j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A, j in B) ,则称图G为一个二分图,如图所示:

图1-1 二分图

假设给“任小牛”进行个性化推荐,从节点“任小牛”开始游走,游走到一个节点时,首先alpha概率决定继续游走,或者以(1-alpha)的概率停止这次游走并从“任小牛”节点开始重新游走;如果决定继续游走,那么就从当前节点指向的节点中按照权重随机选择一个节点作为下次经过的节点,这样经过很多次的随机游走后,每个节点被访问到的概率就会收敛。最终推荐列表中节点的权重就是节点的访问概率,PersonalRank方法公式如下1-1所示,其中PR(j)表示物品j的访问概率,out(i) 是物品节点i的出度,alpha决定继续访问的概率。 

(1-1)

但是,迭代形式的Personal Rank算法计算复杂度较高,它需要经过多次的迭代游走,才能使得各节点的重要度趋于稳定,其改进方案是经过一次矩阵运算直接得到系统的稳态,公式1-2为上式的矩阵表示形式: 

​​

(1-2) 

其中r是n维向量,每个元素表示一个节点的PR重要度, 也是个n维向量,第i个位置上是1,其余位置均为0,表示对第i个节点进行推荐,M 是n阶转移矩阵,定义见公式1-3:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值