深入 JVM 即时编译器 JIT
解释执行与 JIT
Java 程序在运行的时候,主要就是执行字节码指令,一般这些指令会按照顺序解释执行,这种就是解释执行,解释执行的方式是非常低效的,它需要把字节码先翻译成机器码,才能往下执行。另外,字节码是 Java 编译器做的一次初级优化,许多代码可以满足语法分析,其实还有很大的优化空间。所以,为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化。完成这个任务的编译器,就称为即时编译器(Just In Time Compiler),简称 JIT 编译器。
热点代码
热点代码,就是那些被频繁调用的代码,比如调用次数很高或者在 for 循环里的那些代码。这些再次编译后的机器码会被缓存起来,以备下次使用,但对于那些执行次数很少的代码来说,这种编译动作就纯属浪费。
JVM 提供了一个参数“-XX:ReservedCodeCacheSize”,用来限制 CodeCache 的大小。也就是说,JIT 编译后的代码都会放在 CodeCache 里。如果这个空间不足,JIT 就无法继续编译,编译执行会变成解释执行,性能会降低一个数量级。同时,JIT 编译器会一直尝试去优化代码,从而造成了 CPU占用上升。
热点探测
在 HotSpot 虚拟机中的热点探测是 JIT 优化的条件,热点探测是基于计数器的热点探测,采用这种方法的虚拟机会为每个方法建立计数器统计方法的执行次数,如果执行次数超过一定的阈值就认为它是“热点方法”。虚拟机为每个方法准备了两类计数器:方法调用计数器(Invocation Counter)和回边计数器(Back Edge Counter)。在确定虚拟机运行参数的前提下,这两个计数器都有一个确定的阈值,当计数器超过阈值溢出了,就会触发 JIT 编译。
方法调用计数器
用于统计方法被调用的次数,方法调用计数器的默认阈值在 C1 模式下是 1500 次,在 C2 模式在是 10000 次,可通过 -XX: CompileThreshold 来设定;而在分层编译的情况下,-XX: CompileThreshold 指定的阈值将失效,此时将会根据当前待编译的方法数以及编译线程数来动态调整。当方法计数器和回边计数器之和超过方法计数器阈值时,就会触发 JIT 编译器。
回边计数器
用于统计一个方法中循环体代码执行的次数,在字节码中遇到控制流向后跳转的指令称为“回边”(Back Edge),该值用于计算是否触发 C1 编译的阈值,在不开启分层编译的情况下,C1 默认为 13995,C2 默认为 10700,可通过 -XX: OnStackReplacePercentage=N 来设置;而在分层编译的情况下,-XX:OnStackReplacePercentage 指定的阈值同样会失效,此时将根据当前待编译的方法数以及编译线程数来动态调整。建立回边计数器的主要目的是为了触发 OSR(On StackReplacement)编译,即栈上编译。在一些循环周期比较长的代码段中,当循环达到回边计数器阈值时,JVM 会认为这段是热点代码,JIT 编译器就会将这段代码编译成机器语言并缓存,在该循环时间段内,会直接将执行代码替换,执行缓存的机器语言。
一个类的生命周期
类生命周期 7 个阶段
类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)7 个阶段。其中验证、准备、解析 3 个部分统称为连接(Linking)
阶段顺序
加载、校验、准备、初始化和卸载这五个阶段的顺序是确定的,但是对于“解析”阶段则不一定,它在某些情况下可以在初始化之后再开始,这样做是为了支持 java 的运行时绑定特征(也称为动态绑定或晚期绑定)。
加载的时机
要开始类第一个阶段“加载”,虚拟机规范没有强制约束,这点交给虚拟机的具体实现来自由把控。“加载 loading”阶段是整个类加载(class loading)过程的一个阶段。
加载阶段虚拟机需要完成以下 3 件事情:
1)通过一个类的全限定名来获取定义此类的二进制字节流。
2)将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
3)在内存中生成一个代表这个类的 java.lang.Class 对象,作为方法区这个类的各种数据的访问入口。
注意:比如“通过一个类的全限定名来获取定义此类的二进制字节流”没有指定一定得从某个 class 文件中获取,所以我们可以从 zip 压缩包、从网络中
获取、运行时计算生成、数据库中读取、或者从加密文件中获取等等。
我们也可以通过前面的工具 JHSDB 可以看到,JVM 启动后,相关的类已经加载进入了方法区,成为了方法区的运行时结构。
验证
是连接阶段的第一步,这一阶段的目的是为了确保 Class 文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。但从整体上看,验证阶段大致上会完成下面 4 个阶段的检验动作:文件格式验证、元数据验证、字节码验证、符号引用验证。
准备
准备阶段是正式为类中定义的变量(被 static 修饰的变量)分配内存并设置类变量初始值的阶段,这些变量所使用的内存都将在方法区中进行分配。这个阶段中有两个容易产生混淆的概念需要强调一下:首先,这时候进行内存分配的仅包括类变量(被 static 修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在 Java 堆中。其次,这里所说的初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:public static int value=123;那变量 value 在准备阶段过后的初始值为 0 而不是 123,因为这时候尚未开始执行任何 Java 方法,而把 value 赋值为 123 是后续的初始化环节。
解析
解析阶段是 JVM 将常量池内的符号引用替换为直接引用的过程。
符号引用是一种定义,可以是任何字面上的含义,而直接引用就是直接指向目标的指针、相对偏移量。
直接引用的对象都存在于内存中,你可以把通讯录里的女友手机号码,类比为符号引用,把面对面和你吃饭的女朋友,类比为直接引用。
解析大体可以分为:(不重要)
类或接口的解析
字段解析
类方法解析
接口方法解析
我们了解几个经常发生的异常,就与这个阶段有关。
java.lang.NoSuchFieldError 根据继承关系从下往上,找不到相关字段时的报错。(字段解析异常)
java.lang.IllegalAccessError 字段或者方法,访问权限不具备时的错误。(类或接口的解析异常)
java.lang.NoSuchMethodError 找不到相关方法时的错误。(类方法解析、接口方法解析时发生的异常)
初始化
初始化主要是对一个 class 中的 static{}语句进行操作(对应字节码就是 clinit 方法)。<clinit>()方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成<clinit>()方法。
初始化阶段,虚拟机规范则是严格规定了有且只有 6 种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):
1)遇到 new、getstatic、putstatic 或 invokestatic 这 4 条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这 4 条指令的最常见的Java 代码场景是:
1.使用 new 关键字实例化对象的时候。
2. 读取或设置一个类的静态字段(被 final 修饰、已在编译期把结果放入常量池的静态字段除外)的时候
3.调用一个类的静态方法的时候。
2)使用 java.lang.reflect 包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。
3)当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
4)当虚拟机启动时,用户需要指定一个要执行的主类(包含 main()方法的那个类),虚拟机会先初始化这个主类。
5)当使用 JDK 1.7 的动态语言支持时,如果一个 java.lang.invoke.MethodHandle 实例最后的解析结果 REF_getStatic、REF_putStatic、REF_invokeStatic 的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。
6)当一个接口中定义了 JDK1.8 新加入的默认方法(被 default 关键字修饰的接口方法)时,如果这个接口的实现类发生了初始化,那该接口要在其之前被初始化。
/**
*
*初始化的各种场景
* 通过VM参数可以观察操作是否会导致子类的加载 -XX:+TraceClassLoading
**/
public class Initialization {
public static void main(String[]args){
Initialization initialization = new Initialization();
initialization.M1();//打印子类的静态字段
// initialization.M2();//使用数组的方式创建
// initialization.M3();//打印一个常量
// initialization.M4();//如果使用常量去引用另外一个常量
}
public void M1(){
//如果通过子类引用父类中的静态字段,只会触发父类的初始化,而不会触发子类的初始化(但是子类会被加载)
System.out.println(SubClaszz.value);
}
public void M2(){
//使用数组的方式, 不会触发初始化(触发父类加载,不会触发子类加载)
SuperClazz[]sca = new SuperClazz[10];
}
public void M3(){
//打印一个常量,不会触发初始化(同样不会触类加载、编译的时候这个常量已经进入了自己class的常量池)
System.out.println(SuperClazz.HELLOWORLD);
}
public void M4(){
//如果使用常量去引用另外一个常量(会不会初始化SuperClazz 1 不会走2)
System.out.println(SuperClazz.WHAT);
}
}
public class SubClaszz extends SuperClazz {
static{
System.out.println("SubClass init!");
}
}
public class SuperClazz {
static {
System.out.println("SuperClass init!");
}
public static int value=123;
public static final String HELLOWORLD="hello kingdom";
public static final int WHAT = value;
}
如果通过子类引用父类中的静态字段,只会触发父类的初始化,而不会触发子类的初始化(但是子类会被加载)
线程安全
虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个进程阻塞。所以类的初始化是线程安全的,项目中可以利用这点。
类加载器
整个类加载过程任务非常繁重。类加载器做的就是上面 5 个步骤的事(加载、验证、准备、解析、初始化)。
JDK 提供的三层类加载器
Bootstrap ClassLoader
这是加载器中的扛把子,任何类的加载行为,都要经它过问。它的作用是加载核心类库,也就是 rt.jar、resources.jar、charsets.jar 等。当然这些 jar 包的路径是可以指定的,-Xbootclasspath 参数可以完成指定操作。这个加载器是 C++ 编写的,随着 JVM 启动。
Extention ClassLoader
扩展类加载器,主要用于加载 lib/ext 目录下的 jar 包和 .class 文件。同样的,通过系统变量 java.ext.dirs 可以指定这个目录。这个加载器是个 Java 类,继承自 URLClassLoader。
Application ClassLoader
这是我们写的 Java 类的默认加载器,有时候也叫作 System ClassLoader。一般用来加载 classpath 下的其他所有 jar 包和 .class 文件,我们写的代码,会首先尝试使用这个类加载器进行加载。
Custom ClassLoader
自定义加载器,支持一些个性化的扩展功能。
类加载器的问题
如果你在项目代码里,写一个 java.lang 的包,然后改写 String 类的一些行为,编译后,发现并不能生效。JRE 的类当然不能轻易被覆盖,否则会被别有用心的人利用,这就太危险了。
对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在 Java 虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个 Class 文件,被同一个虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。这里所指的“相等”,包括代表类的 Class 对象的 equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,也包括使用 instanceof 关键字做对象所属关系判定等情况。
双亲委派机制
双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应当有自己的父类加载器。这里类加载器之间的父子关系一般不会以继承(Inheritance)的关系来实现,而是都使用组合(Composition)关系来复用父加载器的代码。
使用双亲委派模型来组织类加载器之间的关系,有一个显而易见的好处就是 Java 类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在 rt.jar 之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此 Object 类在程序的各种类加载器环境中都是同一个类。相反,如果没有使用双亲委派模型,由各个类加载器自行去加载的话,如果用户自己编写了一个称为java.lang.Object 的类,并放在程序的 ClassPath 中,那系统中将会出现多个不同的 Object 类,Java 类型体系中最基础的行为也就无法保证,应用程序也将会变得一片混乱。
我们可以翻阅 JDK 代码的 ClassLoader#loadClass 方法,来看一下具体的加载过程。和我们描述的一样,它首先使用 parent 尝试进行类加载,parent 失败后才轮到自己。同时,我们也注意到,这个方法是可以被覆盖的,也就是双亲委派机制并不一定生效。
自定义类加载器
Tomcat 类加载机制
tomcat 通过 war 包进行应用的发布,它其实是违反了双亲委派机制原则的。简单看一下 tomcat 类加载器的层次结构。
对于一些需要加载的非基础类,会由一个叫作 WebAppClassLoader 的类加载器优先加载。等它加载不到的时候,再交给上层的 ClassLoader 进行加载。这个加载器用来隔绝不同应用的 .class 文件,比如你的两个应用,可能会依赖同一个第三方的不同版本,它们是相互没有影响的。比如同一个项目里面版本不同,调用不同版本的同一个controller方法,需要隔离开来。
那么 tomcat 是怎么打破双亲委派机制的呢?可以看图中的 WebAppClassLoader,它加载自己目录下的 .class 文件,并不会传递给父类的加载器。
但是,它却可以使用 SharedClassLoader 所加载的类,实现了共享和分离的功能。
SPI
Java 中有一个 SPI 机制,全称是 Service Provider Interface,是 Java 提供的一套用来被第三方实现或者扩展的 API,它可以用来启用框架扩展和替换组件。
这个说法可能比较晦涩,但是拿我们常用的数据库驱动加载来说,就比较好理解了。在使用 JDBC 写程序之前,通常会调用下面这行代码,用于加载所需要的驱动类Class.forName(“com.mysql.jdbc.Driver”)
这只是一种初始化模式,通过 static 代码块显式地声明了驱动对象,然后把这些信息,保存到底层的一个 List 中。这种方式我们不做过多的介绍,因为这明显就是一个接口编程的思路(这里不进行细讲)。
但是你会发现,即使删除了 Class.forName 这一行代码,也能加载到正确的驱动类,什么都不需要做,非常的神奇,它是怎么做到的呢?
MySQL 的驱动代码,就是在这里实现的。路径:mysql-connector-java-8.0.11.jar!/META-INF/services/java.sql.Driver
里面的内容是:com.mysql.cj.jdbc.Driver
public class DBUtil {
public static final String URL = "jdbc:mysql://localhost:3306/delay_order?serverTimezone=GMT%2b8";
public static final String USER = "root";
public static final String PASSWORD = "123456";
public static void main(String[] args) throws Exception {
//1.加载驱动程序
Class.forName("com.mysql.cj.jdbc.Driver");
//2. 获得数据库连接
Connection conn = DriverManager.getConnection(URL, USER, PASSWORD);
//3.操作数据库,实现增删改查
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT order_no, order_note FROM order_exp");
//如果有数据,rs.next()返回true
while(rs.next()){
System.out.println(rs.getString("order_no")+" 订单内容:"+rs.getString("order_note"));
}
}
}
通过在 META-INF/services 目录下,创建一个以接口全限定名为命名的文件(内容为实现类的全限定名),即可自动加载这一种实现,这就是 SPI。SPI 实际上是“基于接口的编程+策略模式+配置文件”组合实现的动态加载机制,主要使用 java.util.ServiceLoader 类进行动态装载。
jvm底层预留的一些Driver的接口在jdk里面,但是没有实现类,所以编译可以通过,但是执行会报错。实现类在引入的mysql-connector里面这种方式,同样打破了双亲委派的机制。
DriverManager 类和 ServiceLoader 类都是属于 rt.jar 的。它们的类加载器是 Bootstrap ClassLoader,也就是最上层的那个。而具体的数据库驱动,却属于业务代码,这个启动类加载器是无法加载的。这就比较尴尬了,虽然凡事都要祖先过问,但祖先没有能力去做这件事情,怎么办?
跟踪代码,来看一下。
通过代码你可以发现它把当前的类加载器,设置成了线程的上下文类加载器。那么,对于一个刚刚启动的应用程序来说,它当前的加载器是谁呢?也就是说,启动 main 方法的那个加载器,到底是哪一个?
所以我们继续跟踪代码。找到 Launcher 类,就是 jre 中用于启动入口函数 main 的类。我们在 Launcher 中找到以下代码。
到此为止,事情就比较明朗了,当前线程上下文的类加载器,是应用程序类加载器。使用它来加载第三方驱动。
总结一下
可以让你更好的看到一个打破规则的案例(虽然应该是属于 BootStrap 类加载器加载的,但是还是在 app 类加载器去加载的它。
线程上下文类加载器
(Thread Context ClassLoader)。这个类加载器可以通过java.lang.Thread类的setContext-ClassLoader()方法进行设置,如果创建线程时还未设置,它将会从父线程中继承一个,如果在应用程序的全局范围内都没有设置过的话,那这个类加载器默认就是应用程序类加载器。
双亲委派模型的第三次“被破坏”是由于用户对程序动态性的追求而导致的。这里所说的“动态性”指的是一些非常“热”门的名词:代码热替换(Hot Swap)、模块热部署(Hot Deployment)等。说白了就是希望Java应用程序能像我们的电脑外设那样,接上鼠标、U盘,不用重启机器就能立即使用,鼠标有问题或要升级就换个鼠标,不用关机也不用重启。对于个人电脑来说,重启一次其实没有什么大不了的,但对于一些生产系统来说,关机重启一次可能就要被列为生产事故,这种情况下热部署就对软件开发者,尤其是大型系统或企业级软件开发者具有很大的吸引力。
OSGi实现模块化热部署的关键是它自定义的类加载器机制的实现,每一个程序模块(OSGi中称为Bundle)都有一个自己的类加载器,当需要更换一个Bundle时,就把Bundle连同类加载器一起换掉以实现代码的热替换。在OSGi环境下,类加载器不再双亲委派模型推荐的树状结构,而是进一步发展为更加复杂的网状结构,当收到类加载请求时,OSGi将按照下面的顺序进行类搜索:
1)将以java.*开头的类,委派给父类加载器加载。
2)否则,将委派列表名单内的类,委派给父类加载器加载。
3)否则,将Import列表中的类,委派给Export这个类的Bundle的类加载器加载。
4)否则,查找当前Bundle的ClassPath,使用自己的类加载器加载。
5)否则,查找类是否在自己的Fragment Bundle中,如果在,则委派给Fragment Bundle的类加载器加载。
6)否则,查找Dynamic Import列表的Bundle,委派给对应Bundle的类加载器加载。
7)否则,类查找失败。上面的查找顺序中只有开头两点仍然符合双亲委派模型的原则,其余的类查找都是在平级的类加载器中进行的,关于OSGi的其他内容,笔者就不再展开了。
OSGi 曾经非常流行,Eclipse 就使用 OSGi 作为插件系统的基础。OSGi 是服务平台的规范,旨在用于需要长运行时间、动态更新和对运行环境破坏最小的系统。
OSGi 规范定义了很多关于包生命周期,以及基础架构和绑定包的交互方式。这些规则,通过使用特殊 Java 类加载器来强制执行,比较霸道。比如,在一般 Java 应用程序中,classpath 中的所有类都对所有其他类可见,这是毋庸置疑的。但是,OSGi 类加载器基于 OSGi 规范和每个绑定包的manifest.mf 文件中指定的选项,来限制这些类的交互,这就让编程风格变得非常的怪异。但我们不难想象,这种与直觉相违背的加载方式,这些都是由
专用的类加载器来实现的。了解即可