#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<cctype>
#include<vector>
#include<iomanip>
#include<queue>
#include<cassert>
#define INF 0x3f3f3f3f
#define max(x,y) x > y ? x : y
using namespace std;
bool map[1007][1007];
bool visited[10007];
void DFS(int n, int v){
visited[v] = 1;
for(int i = 1; i <= n; i ++){
if(map[v][i] && !visited[i]){
DFS(n,i);
}
}
}
int DFS_Traverse(int n, int v){
memset(visited,0,sizeof(visited));
visited[v] = 1;
int ans = 0;
for(int i = 1; i <= n; i ++){
if(!visited[i]) DFS(n, i), ans ++;
}
return ans;
}
int main(){
memset(map,0,sizeof(map));
int n, m, k, p, q, c;
cin>>n>>m>>k;
for(int i = 0; i < m; i ++){
cin>>p>>q;
map[p][q] = 1;
map[q][p] = 1;
}
for(int i = 0; i < k; i ++){
cin>>c;
cout<<DFS_Traverse(n, c) - 1<<endl;
}
}
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<cctype>
#include<vector>
#include<iomanip>
#include<queue>
#include<cassert>
#define INF 0x3f3f3f3f
#define max(x,y) x > y ? x : y
using namespace std;
bool map[1007][1007];
bool visited[10007];
void DFS(int n, int v){
visited[v] = 1;
for(int i = 1; i <= n; i ++){
if(map[v][i] && !visited[i]){
DFS(n,i);
}
}
}
int DFS_Traverse(int n, int v){
memset(visited,0,sizeof(visited));
visited[v] = 1;
int ans = 0;
for(int i = 1; i <= n; i ++){
if(!visited[i]) DFS(n, i), ans ++;
}
return ans;
}
int main(){
memset(map,0,sizeof(map));
int n, m, k, p, q, c;
cin>>n>>m>>k;
for(int i = 0; i < m; i ++){
cin>>p>>q;
map[p][q] = 1;
map[q][p] = 1;
}
for(int i = 0; i < k; i ++){
cin>>c;
cout<<DFS_Traverse(n, c) - 1<<endl;
}
}
本文介绍了一种基于深度优先搜索(DFS)的图遍历算法实现,并通过具体代码示例展示了如何利用DFS来计算图中连通分量的数量。文章首先定义了图的基本结构,并通过递归方式实现了DFS算法,进而利用该算法进行图的整体遍历,计算出除起始节点外不相连的独立子图数量。
352

被折叠的 条评论
为什么被折叠?



