srwlock和条件变量例子2

本文讨论了使用InterlockedDecrement和InterlockedIncrement时可能出现的问题,特别是在多线程环境下。通过一个具体的例子展示了不当使用这些原子操作可能导致的状态混乱,并提出了改进方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.youkuaiyun.com/xin_wu_hen/article/details/6644604


问题已经在帖子里指出:


http://bbs.youkuaiyun.com/topics/390871405?page=1#post-398195290



if( InterlockedDecrement(&IsReadOver) < 0 ) InterlockedIncrement(&IsReadOver);


线程1, 线程2 2个读线程, 来执行这逻辑代码。

线程1, isreadeover由2变为1, 同时,线程2被中断,线程1 继续把1变为0.

此时候,线程2 把把0变成-1, 线程2把-1变成-2.然后线程1可能把-2变成-3. 等等,

都有可能性。


可以说,这代码非常糟糕,很烂。

根源在于:  读线程里的那个while循环  。  

最好的法子是: 

内容概要:本文详细探讨了杯形谐波减速器的齿廓修形方法及寿命预测分析。文章首先介绍了针对柔轮与波发生器装配时出现的啮合干涉问题,提出了一种柔轮齿廓修形方法。通过有限元法装配仿真确定修形量,并对修形后的柔轮进行装配运转有限元分析。基于Miner线性疲劳理论,使用Fe-safe软件预测柔轮寿命。结果显示,修形后柔轮装配最大应力从962.2 MPa降至532.7 MPa,负载运转应力为609.9 MPa,解决了啮合干涉问题,柔轮寿命循环次数达到4.28×10⁶次。此外,文中还提供了详细的Python代码实现及ANSYS APDL脚本,用于柔轮变形分析、齿廓修形设计、有限元验证疲劳寿命预测。 适合人群:机械工程领域的研究人员、工程师,尤其是从事精密传动系统设计分析的专业人士。 使用场景及目标:①解决杯形谐波减速器中柔轮与波发生器装配时的啮合干涉问题;②通过优化齿廓修形提高柔轮的力学性能使用寿命;③利用有限元分析疲劳寿命预测技术评估修形效果,确保设计方案的可靠性可行性。 阅读建议:本文涉及大量有限元分析疲劳寿命预测的具体实现细节,建议读者具备一定的机械工程基础知识有限元分析经验。同时,读者可以通过提供的Python代码ANSYS APDL脚本进行实际操作验证,加深对修形方法技术路线的理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值